Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/2421 |
Resumo: | In this study the capacity of three species of fungi (Aspergillus niger LTB, Aspergillus glaucus LTB and Penicillium expansum LABQ) of producing cellulases and hemicellulases in liquid medium (0,2% yeast extract, 0,3% NaNO3, 0,05% KCl, 0,05% MgSO4.7H2O, 0,01% FeSO4.7H2O and 0,1% K2HPO4) was investigated. Carbon sources silvergrass, sugar cane bagasse and bamboo were tested for the enzyme production. Daily aliquots were removed for 15 days. The production of cellulases (FPase, cellobiase, endoglucanase e aril-β-glucosidase) and hemicellulases (α- galactosidase, L-arabinofuranosidase, β-xylosidase e xylanase) was evaluated. Besides, the characterization of the enzymes that presented high activity was made. The silvergrass was the carbon source that more efficiently induced the xylanase production for the fungi A. niger LTB, A. glaucus LTB and P. expansum LABQ; the FPase and cellobiase production for the fungus A. niger LTB; and the endoglucanase production for the fungi A. niger LTB and P. expansum LABQ. The fungus A. niger LTB was what produced larger revenues of most of the enzymes (60,76 U/g of endoglucanase, 48,7 U/g of FPase, 5320 U/g of xylanase and 228 U/g of cellobiase). The cellulases presented larger activities in acid pHs and in temperatures of 50°C and 60°C, and the FPase and the endoglucanase presented the optimum pH of 4,0. The FPase retained 76% of its activity approximately after being preincubated by 5 hours in its optimum temperature (50°C) and the endoglucanase presented 68% of residual activity after 24 hours of preincubation in its optimum temperature (60°C). The aril-β-glucosidase exhibited larger activity in pH 4,5 and in the temperature of 60°C, coming little thermostable, retaining only 15% of its activity after being incubated by 3,5 hours. The cellobiase presented values different in relation to the aril-β-glucosidase, possessing larger activity in pH 5,0 and in the temperature of 50°C, besides being more thermostable, maintaining 53% of its initial activity after preincubation for 14 hours to 50°C. The xylanase presented high activity in the strip of pH 4,0-6,0, with maximum activity in pH 5,5 and to 50°C. This enzyme was highly thermostable to 50°C, maintaining 68% of its initial activity after 24 hours of preincubation. It was also tested, in this work, several severity conditions in the dilute acid pretreatment in three lignocellulosic biomasses (silvergrass, sugar cane bagasse and bamboo), starting from the quantification of the carbohydrates in the pretreated biomass, of the reductor sugars and of the inhibitors furfural and hidroximetilfurfural (HMF). Firstly, the samples were characterized with relationship to the carbohydrates and lignin tenor. The bamboo presented around 45% of cellulose, 20% of hemicellulose and 22,5% of lignin. The sugar cane bagasse presented a tenor of approximately 43% of cellulose, 24,7% of hemicellulose and 20,2% of lignin. The silvergrass presented smaller lignin and hemicellulose tenor, with values around 18,8% and 14,5%, respectively. With relationship to the glucans tenor in the pretreated samples, there were not great difference for the biomasses. Besides, the acid hydrolysis went more efficient for the sugar cane bagasse and for the silvergrass, because 82% and 73,3% of hemicellulose were liberated of these biomasses, respectively. The bamboo lost only 65,7% of its initial hemicellulose. Likewise, for the bamboo the most suitable condition for the dilute acid pretreatment would be of 1% sulfuric acid with a treatment of 60 minutes; for the silvergrass it would be 0,5% sulfuric acid during 90 minutes; and for the bagasse it would be 0,5% sulfuric acid during 30 min. Besides, the bagasse was the biomass that was shown more promising for the bioethanol production, because it needed softer conditions and, consequently, cheaper. |
id |
UFV_537a573e9e535f40bd30842fa60dc55d |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/2421 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Rodrigues, Rosilene Souzahttp://lattes.cnpq.br/5969105465137618Guimarães, Valéria Montezehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3Fietto, Luciano Gomeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763824H8Rezende, Sebastião Tavares dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787599A3Colodette, Jorge Luizhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721443U9Moreira, Maurílio Alveshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796105P22015-03-26T13:07:30Z2011-03-212015-03-26T13:07:30Z2009-04-07RODRIGUES, Rosilene Souza. Production of enzymes and evaluation of acid pretreatment of biomasses for bioethanol production. 2009. 95 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2009.http://locus.ufv.br/handle/123456789/2421In this study the capacity of three species of fungi (Aspergillus niger LTB, Aspergillus glaucus LTB and Penicillium expansum LABQ) of producing cellulases and hemicellulases in liquid medium (0,2% yeast extract, 0,3% NaNO3, 0,05% KCl, 0,05% MgSO4.7H2O, 0,01% FeSO4.7H2O and 0,1% K2HPO4) was investigated. Carbon sources silvergrass, sugar cane bagasse and bamboo were tested for the enzyme production. Daily aliquots were removed for 15 days. The production of cellulases (FPase, cellobiase, endoglucanase e aril-β-glucosidase) and hemicellulases (α- galactosidase, L-arabinofuranosidase, β-xylosidase e xylanase) was evaluated. Besides, the characterization of the enzymes that presented high activity was made. The silvergrass was the carbon source that more efficiently induced the xylanase production for the fungi A. niger LTB, A. glaucus LTB and P. expansum LABQ; the FPase and cellobiase production for the fungus A. niger LTB; and the endoglucanase production for the fungi A. niger LTB and P. expansum LABQ. The fungus A. niger LTB was what produced larger revenues of most of the enzymes (60,76 U/g of endoglucanase, 48,7 U/g of FPase, 5320 U/g of xylanase and 228 U/g of cellobiase). The cellulases presented larger activities in acid pHs and in temperatures of 50°C and 60°C, and the FPase and the endoglucanase presented the optimum pH of 4,0. The FPase retained 76% of its activity approximately after being preincubated by 5 hours in its optimum temperature (50°C) and the endoglucanase presented 68% of residual activity after 24 hours of preincubation in its optimum temperature (60°C). The aril-β-glucosidase exhibited larger activity in pH 4,5 and in the temperature of 60°C, coming little thermostable, retaining only 15% of its activity after being incubated by 3,5 hours. The cellobiase presented values different in relation to the aril-β-glucosidase, possessing larger activity in pH 5,0 and in the temperature of 50°C, besides being more thermostable, maintaining 53% of its initial activity after preincubation for 14 hours to 50°C. The xylanase presented high activity in the strip of pH 4,0-6,0, with maximum activity in pH 5,5 and to 50°C. This enzyme was highly thermostable to 50°C, maintaining 68% of its initial activity after 24 hours of preincubation. It was also tested, in this work, several severity conditions in the dilute acid pretreatment in three lignocellulosic biomasses (silvergrass, sugar cane bagasse and bamboo), starting from the quantification of the carbohydrates in the pretreated biomass, of the reductor sugars and of the inhibitors furfural and hidroximetilfurfural (HMF). Firstly, the samples were characterized with relationship to the carbohydrates and lignin tenor. The bamboo presented around 45% of cellulose, 20% of hemicellulose and 22,5% of lignin. The sugar cane bagasse presented a tenor of approximately 43% of cellulose, 24,7% of hemicellulose and 20,2% of lignin. The silvergrass presented smaller lignin and hemicellulose tenor, with values around 18,8% and 14,5%, respectively. With relationship to the glucans tenor in the pretreated samples, there were not great difference for the biomasses. Besides, the acid hydrolysis went more efficient for the sugar cane bagasse and for the silvergrass, because 82% and 73,3% of hemicellulose were liberated of these biomasses, respectively. The bamboo lost only 65,7% of its initial hemicellulose. Likewise, for the bamboo the most suitable condition for the dilute acid pretreatment would be of 1% sulfuric acid with a treatment of 60 minutes; for the silvergrass it would be 0,5% sulfuric acid during 90 minutes; and for the bagasse it would be 0,5% sulfuric acid during 30 min. Besides, the bagasse was the biomass that was shown more promising for the bioethanol production, because it needed softer conditions and, consequently, cheaper.Neste estudo investigou-se a capacidade de três espécies de fungos (Aspergillus niger LTB, Aspergillus glaucus LTB e Penicillium expansum LABQ) de produzir celulases e hemicelulases em meio líquido (0,2% extrato de levedura, 0,3% NaNO3, 0,05% KCl, 0,05% MgSO4.7H2O, 0,01% FeSO4.7H2O e 0,1% K2HPO4). Fontes de carbono forrageira, bagaço de cana e farelo de trigo foram testadas para a produção das enzimas. Alíquotas diárias foram retiradas durante 15 dias. Avaliou-se a produção de celulases (FPase, celobiase, endoglicanase e aril-β-glicosidase) e de hemicelulases (α- galactosidase, L-arabinofuranosidase, β-xilosidase e xilanase). Além disso, foi feita a caracterização das enzimas que apresentaram alta atividade. A forrageira foi a fonte de carbono que mais eficientemente induziu a produção de xilanase pelos fungos A. niger LTB, A. glaucus LTB e P. expansum LABQ; FPase e celobiase pelo fungo A. niger LTB; e endoglicanase pelos fungos A. niger LTB e P. expansum LABQ. O fungo A. niger LTB foi o que produziu maiores rendimentos da maioria das enzimas (60,76 U/g de endoglicanase, 48,7 U/g de FPase, 5320 U/g de xilanase e 228 U/g de celobiase). As celulases apresentaram maiores atividades em pHs ácidos e em temperaturas de 50°C e 60°C, sendo que a FPase e a endoglicanase apresentaram o pH ótimo 4,0. A FPase reteve aproximadamente 76% da sua atividade após ser pré-incubada por 5 horas na sua temperatura ótima (50°C) e a endoglicanase apresentou 68% de atividade residual após 24 horas de pré-incubação na sua temperatura ótima (60°C). A aril-β-glicosidase exibiu maior atividade em pH 4,5 e na temperatura de 60°C, apresentando-se pouco termoestável, retendo apenas 15% da sua atividade após ser incubada por 3,5 horas. A celobiase apresentou valores diferentes da aril-β-glicosidase, tendo maior atividade em pH 5,0 e na temperatura de 50°C, além de ser mais termoestável, mantendo 53% da sua atividade inicial após pré-incubação por 14 horas a 50°C. A xilanase apresentou alta atividade na faixa de pH de 4,0-6,0, com atividade máxima em pH 5,5 e a 50°C. Esta enzima foi altamente estável a 50°C, mantendo 68% da sua atividade inicial após 24 horas de pré-incubação. Testou-se também, neste trabalho, várias condições de severidade no pré-tratamento ácido diluído em três biomassas lignocelulósicas (forrageira, bagaço de cana e bambu), a partir da quantificação dos carboidratos na biomassa pré-tratada, dos açúcares redutores e dos inibidores furfural e hidroximetilfurfural (HMF) presentes no hidrolisado hemicelulósico. Primeiramente, as amostras foram caracterizadas com relação ao teor de carboidratos e lignina. O bambu apresentou em torno de 45% de celulose, 20% de hemicelulose e 22,5% de lignina. O bagaço de cana apresentou um teor de aproximadamente 43% de celulose, 24,7% de hemicelulose e 20,2% de lignina. A forrageira apresentou menor teor de lignina e hemicelulose, com valores em torno de 18,8% e 14,5%, respectivamente; Com relação ao teor de glicanas nas amostras pré-tratadas, não houve grande diferença para as biomassas. Além disso, a hidrólise ácida foi mais eficiente para o bagaço e para a forrageira, visto que 82% e 73,3% de hemicelulose foram liberados destas biomassas, respectivamente. Já o bambu perdeu apenas 65,7% da sua hemicelulose inicial. Assim, para o bambu a condição mais indicada para o pré-tratamento ácido diluído seria de 1% de ácido sulfúrico com um tratamento de 60 min; para a forrageira seria 0,5% de ácido sulfúrico durante 90 min; e para o bagaço de cana seria 0,5% de ácido sulfúrico durante 30 min. Além disso, o bagaço de cana foi a biomassa que se mostrou mais promissora para a produção de bioetanol, visto que necessitou de condições mais brandas e, consequentemente, mais baratas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaMestrado em Bioquímica AgrícolaUFVBRBioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animalEnzimasPré-tratamentoBiomasssasBioetanolEnzymesPretreatmentBiomassesBioethanolCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIAProdução de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanolProduction of enzymes and evaluation of acid pretreatment of biomasses for bioethanol productioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf2273358https://locus.ufv.br//bitstream/123456789/2421/1/texto%20completo.pdf7d0029a3f2f092c149fb066dc49a803eMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain178383https://locus.ufv.br//bitstream/123456789/2421/2/texto%20completo.pdf.txt592910e0686181cf3cbdfb7f745d9442MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3540https://locus.ufv.br//bitstream/123456789/2421/3/texto%20completo.pdf.jpg2b0d251350032251edffd249257b2285MD53123456789/24212016-04-08 23:02:53.758oai:locus.ufv.br:123456789/2421Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-09T02:02:53LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
dc.title.alternative.eng.fl_str_mv |
Production of enzymes and evaluation of acid pretreatment of biomasses for bioethanol production |
title |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
spellingShingle |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol Rodrigues, Rosilene Souza Enzimas Pré-tratamento Biomasssas Bioetanol Enzymes Pretreatment Biomasses Bioethanol CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIA |
title_short |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
title_full |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
title_fullStr |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
title_full_unstemmed |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
title_sort |
Produção de enzimas e avaliação do pré-tratamento ácido de biomassas para produção de bioetanol |
author |
Rodrigues, Rosilene Souza |
author_facet |
Rodrigues, Rosilene Souza |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/5969105465137618 |
dc.contributor.author.fl_str_mv |
Rodrigues, Rosilene Souza |
dc.contributor.advisor-co1.fl_str_mv |
Guimarães, Valéria Monteze |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3 |
dc.contributor.advisor-co2.fl_str_mv |
Fietto, Luciano Gomes |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763824H8 |
dc.contributor.advisor1.fl_str_mv |
Rezende, Sebastião Tavares de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787599A3 |
dc.contributor.referee1.fl_str_mv |
Colodette, Jorge Luiz |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721443U9 |
dc.contributor.referee2.fl_str_mv |
Moreira, Maurílio Alves |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796105P2 |
contributor_str_mv |
Guimarães, Valéria Monteze Fietto, Luciano Gomes Rezende, Sebastião Tavares de Colodette, Jorge Luiz Moreira, Maurílio Alves |
dc.subject.por.fl_str_mv |
Enzimas Pré-tratamento Biomasssas Bioetanol |
topic |
Enzimas Pré-tratamento Biomasssas Bioetanol Enzymes Pretreatment Biomasses Bioethanol CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIA |
dc.subject.eng.fl_str_mv |
Enzymes Pretreatment Biomasses Bioethanol |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIA |
description |
In this study the capacity of three species of fungi (Aspergillus niger LTB, Aspergillus glaucus LTB and Penicillium expansum LABQ) of producing cellulases and hemicellulases in liquid medium (0,2% yeast extract, 0,3% NaNO3, 0,05% KCl, 0,05% MgSO4.7H2O, 0,01% FeSO4.7H2O and 0,1% K2HPO4) was investigated. Carbon sources silvergrass, sugar cane bagasse and bamboo were tested for the enzyme production. Daily aliquots were removed for 15 days. The production of cellulases (FPase, cellobiase, endoglucanase e aril-β-glucosidase) and hemicellulases (α- galactosidase, L-arabinofuranosidase, β-xylosidase e xylanase) was evaluated. Besides, the characterization of the enzymes that presented high activity was made. The silvergrass was the carbon source that more efficiently induced the xylanase production for the fungi A. niger LTB, A. glaucus LTB and P. expansum LABQ; the FPase and cellobiase production for the fungus A. niger LTB; and the endoglucanase production for the fungi A. niger LTB and P. expansum LABQ. The fungus A. niger LTB was what produced larger revenues of most of the enzymes (60,76 U/g of endoglucanase, 48,7 U/g of FPase, 5320 U/g of xylanase and 228 U/g of cellobiase). The cellulases presented larger activities in acid pHs and in temperatures of 50°C and 60°C, and the FPase and the endoglucanase presented the optimum pH of 4,0. The FPase retained 76% of its activity approximately after being preincubated by 5 hours in its optimum temperature (50°C) and the endoglucanase presented 68% of residual activity after 24 hours of preincubation in its optimum temperature (60°C). The aril-β-glucosidase exhibited larger activity in pH 4,5 and in the temperature of 60°C, coming little thermostable, retaining only 15% of its activity after being incubated by 3,5 hours. The cellobiase presented values different in relation to the aril-β-glucosidase, possessing larger activity in pH 5,0 and in the temperature of 50°C, besides being more thermostable, maintaining 53% of its initial activity after preincubation for 14 hours to 50°C. The xylanase presented high activity in the strip of pH 4,0-6,0, with maximum activity in pH 5,5 and to 50°C. This enzyme was highly thermostable to 50°C, maintaining 68% of its initial activity after 24 hours of preincubation. It was also tested, in this work, several severity conditions in the dilute acid pretreatment in three lignocellulosic biomasses (silvergrass, sugar cane bagasse and bamboo), starting from the quantification of the carbohydrates in the pretreated biomass, of the reductor sugars and of the inhibitors furfural and hidroximetilfurfural (HMF). Firstly, the samples were characterized with relationship to the carbohydrates and lignin tenor. The bamboo presented around 45% of cellulose, 20% of hemicellulose and 22,5% of lignin. The sugar cane bagasse presented a tenor of approximately 43% of cellulose, 24,7% of hemicellulose and 20,2% of lignin. The silvergrass presented smaller lignin and hemicellulose tenor, with values around 18,8% and 14,5%, respectively. With relationship to the glucans tenor in the pretreated samples, there were not great difference for the biomasses. Besides, the acid hydrolysis went more efficient for the sugar cane bagasse and for the silvergrass, because 82% and 73,3% of hemicellulose were liberated of these biomasses, respectively. The bamboo lost only 65,7% of its initial hemicellulose. Likewise, for the bamboo the most suitable condition for the dilute acid pretreatment would be of 1% sulfuric acid with a treatment of 60 minutes; for the silvergrass it would be 0,5% sulfuric acid during 90 minutes; and for the bagasse it would be 0,5% sulfuric acid during 30 min. Besides, the bagasse was the biomass that was shown more promising for the bioethanol production, because it needed softer conditions and, consequently, cheaper. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-04-07 |
dc.date.available.fl_str_mv |
2011-03-21 2015-03-26T13:07:30Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T13:07:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODRIGUES, Rosilene Souza. Production of enzymes and evaluation of acid pretreatment of biomasses for bioethanol production. 2009. 95 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2009. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/2421 |
identifier_str_mv |
RODRIGUES, Rosilene Souza. Production of enzymes and evaluation of acid pretreatment of biomasses for bioethanol production. 2009. 95 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2009. |
url |
http://locus.ufv.br/handle/123456789/2421 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Mestrado em Bioquímica Agrícola |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/2421/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/2421/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/2421/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
7d0029a3f2f092c149fb066dc49a803e 592910e0686181cf3cbdfb7f745d9442 2b0d251350032251edffd249257b2285 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212844533874688 |