Efficient viewshed computation on terrain in external memory

Detalhes bibliográficos
Autor(a) principal: Andrade, Marcus V. A.
Data de Publicação: 2011
Outros Autores: Magalhães, Salles V. G., Magalhães, Mirella A., Franklin, W. Randolph, Cutler, Barbara M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1007/s10707-009-0100-9
http://www.locus.ufv.br/handle/123456789/22916
Resumo: The recent availability of detailed geographic data permits terrain applications to process large areas at high resolution. However the required massive data processing presents significant challenges, demanding algorithms optimized for both data movement and computation. One such application is viewshed computation, that is, to determine all the points visible from a given point p. In this paper, we present an efficient algorithm to compute viewsheds on terrain stored in external memory. In the usual case where the observer’s radius of interest is smaller than the terrain size, the algorithm complexity is θ(scan(n 2)) where n 2 is the number of points in an n × n DEM and scan(n 2) is the minimum number of I/O operations required to read n 2 contiguous items from external memory. This is much faster than existing published algorithms.
id UFV_58e74ee61a76d2fa33eaaa5171ada86e
oai_identifier_str oai:locus.ufv.br:123456789/22916
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Andrade, Marcus V. A.Magalhães, Salles V. G.Magalhães, Mirella A.Franklin, W. RandolphCutler, Barbara M.2019-01-07T11:43:11Z2019-01-07T11:43:11Z2011-041573-7624https://doi.org/10.1007/s10707-009-0100-9http://www.locus.ufv.br/handle/123456789/22916The recent availability of detailed geographic data permits terrain applications to process large areas at high resolution. However the required massive data processing presents significant challenges, demanding algorithms optimized for both data movement and computation. One such application is viewshed computation, that is, to determine all the points visible from a given point p. In this paper, we present an efficient algorithm to compute viewsheds on terrain stored in external memory. In the usual case where the observer’s radius of interest is smaller than the terrain size, the algorithm complexity is θ(scan(n 2)) where n 2 is the number of points in an n × n DEM and scan(n 2) is the minimum number of I/O operations required to read n 2 contiguous items from external memory. This is much faster than existing published algorithms.engGeoInformaticaVolume 15, Issue 2, Pages 381– 397, April 2011Springer Science+Business Media, LLC 2009info:eu-repo/semantics/openAccessGISExternal memory processingViewshedVisibility mapsEfficient viewshed computation on terrain in external memoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf754596https://locus.ufv.br//bitstream/123456789/22916/1/artigo.pdf2e3923cdf5bb556b32713ae61231ee8aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22916/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/229162019-01-07 09:37:58.399oai:locus.ufv.br:123456789/22916Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-01-07T12:37:58LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Efficient viewshed computation on terrain in external memory
title Efficient viewshed computation on terrain in external memory
spellingShingle Efficient viewshed computation on terrain in external memory
Andrade, Marcus V. A.
GIS
External memory processing
Viewshed
Visibility maps
title_short Efficient viewshed computation on terrain in external memory
title_full Efficient viewshed computation on terrain in external memory
title_fullStr Efficient viewshed computation on terrain in external memory
title_full_unstemmed Efficient viewshed computation on terrain in external memory
title_sort Efficient viewshed computation on terrain in external memory
author Andrade, Marcus V. A.
author_facet Andrade, Marcus V. A.
Magalhães, Salles V. G.
Magalhães, Mirella A.
Franklin, W. Randolph
Cutler, Barbara M.
author_role author
author2 Magalhães, Salles V. G.
Magalhães, Mirella A.
Franklin, W. Randolph
Cutler, Barbara M.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Marcus V. A.
Magalhães, Salles V. G.
Magalhães, Mirella A.
Franklin, W. Randolph
Cutler, Barbara M.
dc.subject.pt-BR.fl_str_mv GIS
External memory processing
Viewshed
Visibility maps
topic GIS
External memory processing
Viewshed
Visibility maps
description The recent availability of detailed geographic data permits terrain applications to process large areas at high resolution. However the required massive data processing presents significant challenges, demanding algorithms optimized for both data movement and computation. One such application is viewshed computation, that is, to determine all the points visible from a given point p. In this paper, we present an efficient algorithm to compute viewsheds on terrain stored in external memory. In the usual case where the observer’s radius of interest is smaller than the terrain size, the algorithm complexity is θ(scan(n 2)) where n 2 is the number of points in an n × n DEM and scan(n 2) is the minimum number of I/O operations required to read n 2 contiguous items from external memory. This is much faster than existing published algorithms.
publishDate 2011
dc.date.issued.fl_str_mv 2011-04
dc.date.accessioned.fl_str_mv 2019-01-07T11:43:11Z
dc.date.available.fl_str_mv 2019-01-07T11:43:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1007/s10707-009-0100-9
http://www.locus.ufv.br/handle/123456789/22916
dc.identifier.issn.none.fl_str_mv 1573-7624
identifier_str_mv 1573-7624
url https://doi.org/10.1007/s10707-009-0100-9
http://www.locus.ufv.br/handle/123456789/22916
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 15, Issue 2, Pages 381– 397, April 2011
dc.rights.driver.fl_str_mv Springer Science+Business Media, LLC 2009
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer Science+Business Media, LLC 2009
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv GeoInformatica
publisher.none.fl_str_mv GeoInformatica
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22916/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22916/2/license.txt
bitstream.checksum.fl_str_mv 2e3923cdf5bb556b32713ae61231ee8a
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213092030316544