No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://locus.ufv.br//handle/123456789/29712 |
Resumo: | No-tillage (NT) has been one of the main advances related to soil management in Brazilian agriculture in the last 30 years. However, its full adoption in lowland areas that are traditionally cultivated with flooded rice is still incipient (<5 %). The main reasons are associated with the soil hydromorphic condition and the management of highly recalcitrant residual crop biomass, demanding soil disturbance even occasionally. This review presents a historical survey about the soil management systems utilized in lowland areas in southern Brazil, emphasizing the experiences of NT adoption in areas with flooded rice. Results from studies focused on the main changes in chemical, physical, and microbiological soil properties due to NT adoption were addressed, as well as the NT effects on greenhouse gas emissions and crop yields. Finally, the main challenges and prospects for NT were discussed considering new emerging scenarios for flooded rice production in lowlands, especially soybean rotation and integrated agricultural production systems. No-tillage can increase the soil organic carbon, the cation exchangeable capacity and tends to promote the accumulation of nutrients as nitrogen in surface layers. Improvements in soil aggregation, porosity and water availability are usually observed in NT, but only if medium or long-term trials are considered. NT favors microbial activity in the shallower soil layer by promoting microbial biomass carbon (+45 %), microbial biomass nitrogen (+54 %) and basal respiration (+54 %) compared to conventional tillage (CT), while the activity of extracellular enzymes also may be stimulated. Crop yield tends to be similar among the soil managements systems over time. Seasonal CH 4 emissions might be reduced by 21 % with NT adoption without increasing N 2 O. Plant breeding and geotechnology advances associated with soybean market valuation intensified the introduction of this crop in paddy fields. The main challenge for the full adoption of NT is the need for soil tillage after rice harvesting to correct soil surface irregularities or manage rice straw. In the future, advances in plant breeding and drainage techniques probably will favor the expansion of NT in southern Brazil lowlands. The traditional system of flooded rice cultivation, based on CT and monoculture associated with beef cattle under extensive grazing, is no longer viable and will not be further established. |
id |
UFV_5fcf2c562dd0ca4c3bd6d311d32038a6 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/29712 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Sousa, Rogério Oliveira deCarlos, Filipe SelauSilva, Leandro Souza daScivittaro, Walkyria BuenoRibeiro, Pablo LacerdaLima, Cláudia Liane Rodrigues de2022-08-18T18:44:09Z2022-08-18T18:44:09Z2021-10-06Sousa RO, Carlos FS, Silva LS, Scivittaro WB, Ribeiro PL, Lima CLR. No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives. Rev Bras Cienc Solo. 2021;45:e0210102.1806-9657https://locus.ufv.br//handle/123456789/29712No-tillage (NT) has been one of the main advances related to soil management in Brazilian agriculture in the last 30 years. However, its full adoption in lowland areas that are traditionally cultivated with flooded rice is still incipient (<5 %). The main reasons are associated with the soil hydromorphic condition and the management of highly recalcitrant residual crop biomass, demanding soil disturbance even occasionally. This review presents a historical survey about the soil management systems utilized in lowland areas in southern Brazil, emphasizing the experiences of NT adoption in areas with flooded rice. Results from studies focused on the main changes in chemical, physical, and microbiological soil properties due to NT adoption were addressed, as well as the NT effects on greenhouse gas emissions and crop yields. Finally, the main challenges and prospects for NT were discussed considering new emerging scenarios for flooded rice production in lowlands, especially soybean rotation and integrated agricultural production systems. No-tillage can increase the soil organic carbon, the cation exchangeable capacity and tends to promote the accumulation of nutrients as nitrogen in surface layers. Improvements in soil aggregation, porosity and water availability are usually observed in NT, but only if medium or long-term trials are considered. NT favors microbial activity in the shallower soil layer by promoting microbial biomass carbon (+45 %), microbial biomass nitrogen (+54 %) and basal respiration (+54 %) compared to conventional tillage (CT), while the activity of extracellular enzymes also may be stimulated. Crop yield tends to be similar among the soil managements systems over time. Seasonal CH 4 emissions might be reduced by 21 % with NT adoption without increasing N 2 O. Plant breeding and geotechnology advances associated with soybean market valuation intensified the introduction of this crop in paddy fields. The main challenge for the full adoption of NT is the need for soil tillage after rice harvesting to correct soil surface irregularities or manage rice straw. In the future, advances in plant breeding and drainage techniques probably will favor the expansion of NT in southern Brazil lowlands. The traditional system of flooded rice cultivation, based on CT and monoculture associated with beef cattle under extensive grazing, is no longer viable and will not be further established.engSociedade Brasileira de Ciência do SoloVol. 45, 2021.Creative Commons Attribution Licenseinfo:eu-repo/semantics/openAccesssoil managementOryza sativarice productionsoil propertiesNo-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectivesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1408266https://locus.ufv.br//bitstream/123456789/29712/1/artigo.pdf6af083e1a46c74a5b1c3a8ca6021db89MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/29712/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/297122022-08-18 15:44:33.816oai:locus.ufv.br:123456789/29712Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-08-18T18:44:33LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
title |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
spellingShingle |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives Sousa, Rogério Oliveira de soil management Oryza sativa rice production soil properties |
title_short |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
title_full |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
title_fullStr |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
title_full_unstemmed |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
title_sort |
No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives |
author |
Sousa, Rogério Oliveira de |
author_facet |
Sousa, Rogério Oliveira de Carlos, Filipe Selau Silva, Leandro Souza da Scivittaro, Walkyria Bueno Ribeiro, Pablo Lacerda Lima, Cláudia Liane Rodrigues de |
author_role |
author |
author2 |
Carlos, Filipe Selau Silva, Leandro Souza da Scivittaro, Walkyria Bueno Ribeiro, Pablo Lacerda Lima, Cláudia Liane Rodrigues de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Sousa, Rogério Oliveira de Carlos, Filipe Selau Silva, Leandro Souza da Scivittaro, Walkyria Bueno Ribeiro, Pablo Lacerda Lima, Cláudia Liane Rodrigues de |
dc.subject.eng.fl_str_mv |
soil management Oryza sativa rice production soil properties |
topic |
soil management Oryza sativa rice production soil properties |
description |
No-tillage (NT) has been one of the main advances related to soil management in Brazilian agriculture in the last 30 years. However, its full adoption in lowland areas that are traditionally cultivated with flooded rice is still incipient (<5 %). The main reasons are associated with the soil hydromorphic condition and the management of highly recalcitrant residual crop biomass, demanding soil disturbance even occasionally. This review presents a historical survey about the soil management systems utilized in lowland areas in southern Brazil, emphasizing the experiences of NT adoption in areas with flooded rice. Results from studies focused on the main changes in chemical, physical, and microbiological soil properties due to NT adoption were addressed, as well as the NT effects on greenhouse gas emissions and crop yields. Finally, the main challenges and prospects for NT were discussed considering new emerging scenarios for flooded rice production in lowlands, especially soybean rotation and integrated agricultural production systems. No-tillage can increase the soil organic carbon, the cation exchangeable capacity and tends to promote the accumulation of nutrients as nitrogen in surface layers. Improvements in soil aggregation, porosity and water availability are usually observed in NT, but only if medium or long-term trials are considered. NT favors microbial activity in the shallower soil layer by promoting microbial biomass carbon (+45 %), microbial biomass nitrogen (+54 %) and basal respiration (+54 %) compared to conventional tillage (CT), while the activity of extracellular enzymes also may be stimulated. Crop yield tends to be similar among the soil managements systems over time. Seasonal CH 4 emissions might be reduced by 21 % with NT adoption without increasing N 2 O. Plant breeding and geotechnology advances associated with soybean market valuation intensified the introduction of this crop in paddy fields. The main challenge for the full adoption of NT is the need for soil tillage after rice harvesting to correct soil surface irregularities or manage rice straw. In the future, advances in plant breeding and drainage techniques probably will favor the expansion of NT in southern Brazil lowlands. The traditional system of flooded rice cultivation, based on CT and monoculture associated with beef cattle under extensive grazing, is no longer viable and will not be further established. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-10-06 |
dc.date.accessioned.fl_str_mv |
2022-08-18T18:44:09Z |
dc.date.available.fl_str_mv |
2022-08-18T18:44:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Sousa RO, Carlos FS, Silva LS, Scivittaro WB, Ribeiro PL, Lima CLR. No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives. Rev Bras Cienc Solo. 2021;45:e0210102. |
dc.identifier.uri.fl_str_mv |
https://locus.ufv.br//handle/123456789/29712 |
dc.identifier.issn.none.fl_str_mv |
1806-9657 |
identifier_str_mv |
Sousa RO, Carlos FS, Silva LS, Scivittaro WB, Ribeiro PL, Lima CLR. No-tillage for flooded rice in Brazilian subtropical paddy fields: history, challenges, advances and perspectives. Rev Bras Cienc Solo. 2021;45:e0210102. 1806-9657 |
url |
https://locus.ufv.br//handle/123456789/29712 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Vol. 45, 2021. |
dc.rights.driver.fl_str_mv |
Creative Commons Attribution License info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Creative Commons Attribution License |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/29712/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/29712/2/license.txt |
bitstream.checksum.fl_str_mv |
6af083e1a46c74a5b1c3a8ca6021db89 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212898700165120 |