Antimonide-based membranes synthesis integration and strain engineering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1073/pnas.1615645114 http://www.locus.ufv.br/handle/123456789/12248 |
Resumo: | Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5μm and lateral sizes from 24×24 μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range. |
id |
UFV_602731bbd4aff42a6f05ecf0e617aad5 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/12248 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Ferreira, Sukarno O.Zamiri, MarziyehAnwar, FarhanaKlein, Brianna A.Rasoulof, AminDawson, Noel M.Schuler-Sandy, TedDeneke, Christoph F.Cavallo, FrancescaKrishna, Sanjay2017-10-20T15:10:36Z2017-10-20T15:10:36Z2016-11-1510916490https://doi.org/10.1073/pnas.1615645114http://www.locus.ufv.br/handle/123456789/12248Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5μm and lateral sizes from 24×24 μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.engProceedings of the National Academy of Sciences of the United States of Americavol. 114, n. 1, E1–E8, November 2016AntimonideMembranesTransferInfraredIntegrationAntimonide-based membranes synthesis integration and strain engineeringinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALPNAS-2017-Zamiri-E1-8.pdfPNAS-2017-Zamiri-E1-8.pdfTexto completoapplication/pdf8814017https://locus.ufv.br//bitstream/123456789/12248/1/PNAS-2017-Zamiri-E1-8.pdfa787cf039396a5b2ad69ecd898dc838fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/12248/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILPNAS-2017-Zamiri-E1-8.pdf.jpgPNAS-2017-Zamiri-E1-8.pdf.jpgIM Thumbnailimage/jpeg5680https://locus.ufv.br//bitstream/123456789/12248/3/PNAS-2017-Zamiri-E1-8.pdf.jpg96475eea57bcabc92b0aa5b3cbc80824MD53123456789/122482017-10-20 22:00:43.538oai:locus.ufv.br:123456789/12248Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-10-21T01:00:43LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Antimonide-based membranes synthesis integration and strain engineering |
title |
Antimonide-based membranes synthesis integration and strain engineering |
spellingShingle |
Antimonide-based membranes synthesis integration and strain engineering Ferreira, Sukarno O. Antimonide Membranes Transfer Infrared Integration |
title_short |
Antimonide-based membranes synthesis integration and strain engineering |
title_full |
Antimonide-based membranes synthesis integration and strain engineering |
title_fullStr |
Antimonide-based membranes synthesis integration and strain engineering |
title_full_unstemmed |
Antimonide-based membranes synthesis integration and strain engineering |
title_sort |
Antimonide-based membranes synthesis integration and strain engineering |
author |
Ferreira, Sukarno O. |
author_facet |
Ferreira, Sukarno O. Zamiri, Marziyeh Anwar, Farhana Klein, Brianna A. Rasoulof, Amin Dawson, Noel M. Schuler-Sandy, Ted Deneke, Christoph F. Cavallo, Francesca Krishna, Sanjay |
author_role |
author |
author2 |
Zamiri, Marziyeh Anwar, Farhana Klein, Brianna A. Rasoulof, Amin Dawson, Noel M. Schuler-Sandy, Ted Deneke, Christoph F. Cavallo, Francesca Krishna, Sanjay |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Ferreira, Sukarno O. Zamiri, Marziyeh Anwar, Farhana Klein, Brianna A. Rasoulof, Amin Dawson, Noel M. Schuler-Sandy, Ted Deneke, Christoph F. Cavallo, Francesca Krishna, Sanjay |
dc.subject.pt-BR.fl_str_mv |
Antimonide Membranes Transfer Infrared Integration |
topic |
Antimonide Membranes Transfer Infrared Integration |
description |
Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5μm and lateral sizes from 24×24 μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-11-15 |
dc.date.accessioned.fl_str_mv |
2017-10-20T15:10:36Z |
dc.date.available.fl_str_mv |
2017-10-20T15:10:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1073/pnas.1615645114 http://www.locus.ufv.br/handle/123456789/12248 |
dc.identifier.issn.none.fl_str_mv |
10916490 |
identifier_str_mv |
10916490 |
url |
https://doi.org/10.1073/pnas.1615645114 http://www.locus.ufv.br/handle/123456789/12248 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
vol. 114, n. 1, E1–E8, November 2016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Proceedings of the National Academy of Sciences of the United States of America |
publisher.none.fl_str_mv |
Proceedings of the National Academy of Sciences of the United States of America |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/12248/1/PNAS-2017-Zamiri-E1-8.pdf https://locus.ufv.br//bitstream/123456789/12248/2/license.txt https://locus.ufv.br//bitstream/123456789/12248/3/PNAS-2017-Zamiri-E1-8.pdf.jpg |
bitstream.checksum.fl_str_mv |
a787cf039396a5b2ad69ecd898dc838f 8a4605be74aa9ea9d79846c1fba20a33 96475eea57bcabc92b0aa5b3cbc80824 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212863506808832 |