Antimonide-based membranes synthesis integration and strain engineering

Detalhes bibliográficos
Autor(a) principal: Ferreira, Sukarno O.
Data de Publicação: 2016
Outros Autores: Zamiri, Marziyeh, Anwar, Farhana, Klein, Brianna A., Rasoulof, Amin, Dawson, Noel M., Schuler-Sandy, Ted, Deneke, Christoph F., Cavallo, Francesca, Krishna, Sanjay
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1073/pnas.1615645114
http://www.locus.ufv.br/handle/123456789/12248
Resumo: Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5μm and lateral sizes from 24×24 μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.
id UFV_602731bbd4aff42a6f05ecf0e617aad5
oai_identifier_str oai:locus.ufv.br:123456789/12248
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Ferreira, Sukarno O.Zamiri, MarziyehAnwar, FarhanaKlein, Brianna A.Rasoulof, AminDawson, Noel M.Schuler-Sandy, TedDeneke, Christoph F.Cavallo, FrancescaKrishna, Sanjay2017-10-20T15:10:36Z2017-10-20T15:10:36Z2016-11-1510916490https://doi.org/10.1073/pnas.1615645114http://www.locus.ufv.br/handle/123456789/12248Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5μm and lateral sizes from 24×24 μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.engProceedings of the National Academy of Sciences of the United States of Americavol. 114, n. 1, E1–E8, November 2016AntimonideMembranesTransferInfraredIntegrationAntimonide-based membranes synthesis integration and strain engineeringinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALPNAS-2017-Zamiri-E1-8.pdfPNAS-2017-Zamiri-E1-8.pdfTexto completoapplication/pdf8814017https://locus.ufv.br//bitstream/123456789/12248/1/PNAS-2017-Zamiri-E1-8.pdfa787cf039396a5b2ad69ecd898dc838fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/12248/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILPNAS-2017-Zamiri-E1-8.pdf.jpgPNAS-2017-Zamiri-E1-8.pdf.jpgIM Thumbnailimage/jpeg5680https://locus.ufv.br//bitstream/123456789/12248/3/PNAS-2017-Zamiri-E1-8.pdf.jpg96475eea57bcabc92b0aa5b3cbc80824MD53123456789/122482017-10-20 22:00:43.538oai:locus.ufv.br:123456789/12248Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-10-21T01:00:43LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Antimonide-based membranes synthesis integration and strain engineering
title Antimonide-based membranes synthesis integration and strain engineering
spellingShingle Antimonide-based membranes synthesis integration and strain engineering
Ferreira, Sukarno O.
Antimonide
Membranes
Transfer
Infrared
Integration
title_short Antimonide-based membranes synthesis integration and strain engineering
title_full Antimonide-based membranes synthesis integration and strain engineering
title_fullStr Antimonide-based membranes synthesis integration and strain engineering
title_full_unstemmed Antimonide-based membranes synthesis integration and strain engineering
title_sort Antimonide-based membranes synthesis integration and strain engineering
author Ferreira, Sukarno O.
author_facet Ferreira, Sukarno O.
Zamiri, Marziyeh
Anwar, Farhana
Klein, Brianna A.
Rasoulof, Amin
Dawson, Noel M.
Schuler-Sandy, Ted
Deneke, Christoph F.
Cavallo, Francesca
Krishna, Sanjay
author_role author
author2 Zamiri, Marziyeh
Anwar, Farhana
Klein, Brianna A.
Rasoulof, Amin
Dawson, Noel M.
Schuler-Sandy, Ted
Deneke, Christoph F.
Cavallo, Francesca
Krishna, Sanjay
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ferreira, Sukarno O.
Zamiri, Marziyeh
Anwar, Farhana
Klein, Brianna A.
Rasoulof, Amin
Dawson, Noel M.
Schuler-Sandy, Ted
Deneke, Christoph F.
Cavallo, Francesca
Krishna, Sanjay
dc.subject.pt-BR.fl_str_mv Antimonide
Membranes
Transfer
Infrared
Integration
topic Antimonide
Membranes
Transfer
Infrared
Integration
description Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5μm and lateral sizes from 24×24 μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.
publishDate 2016
dc.date.issued.fl_str_mv 2016-11-15
dc.date.accessioned.fl_str_mv 2017-10-20T15:10:36Z
dc.date.available.fl_str_mv 2017-10-20T15:10:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1073/pnas.1615645114
http://www.locus.ufv.br/handle/123456789/12248
dc.identifier.issn.none.fl_str_mv 10916490
identifier_str_mv 10916490
url https://doi.org/10.1073/pnas.1615645114
http://www.locus.ufv.br/handle/123456789/12248
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv vol. 114, n. 1, E1–E8, November 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Proceedings of the National Academy of Sciences of the United States of America
publisher.none.fl_str_mv Proceedings of the National Academy of Sciences of the United States of America
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/12248/1/PNAS-2017-Zamiri-E1-8.pdf
https://locus.ufv.br//bitstream/123456789/12248/2/license.txt
https://locus.ufv.br//bitstream/123456789/12248/3/PNAS-2017-Zamiri-E1-8.pdf.jpg
bitstream.checksum.fl_str_mv a787cf039396a5b2ad69ecd898dc838f
8a4605be74aa9ea9d79846c1fba20a33
96475eea57bcabc92b0aa5b3cbc80824
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212863506808832