Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/837 |
Resumo: | This paper aims to apply principles of Bayesian networks as a tool to estimate the occurrence probability of hazards in the watershed, the source water uptaking and distribution network, and to apply the Hazard Analysis and Critical Control Points System (HACCPS) to identify hazards at each stage on the water treatment plant, through a case study involving the city of Viçosa (Minas Gerais/Brazil). To assist in the identification of hazards associated with the water supply system within the watershed, caption zone and distribution network was adopted a probabilistic classifier, called Bayesian learning algorithm, which was used in the construction of the Bayesian network. For the Bayesian network modeling, it was used the public domain software UnBBayes, developed by the Artificial Intelligence Group at the University of Brasilia (UnB). In the water treatment plant it was used the Hazard Analysis and Critical Control Points System (HACCP) to identify hazards at each stage of treatment (coagulation / rapid mixing, flocculation, sedimentation, rapid filtration and disinfection). The hazard identification and risk characterization were made from a survey of secondary and primary data in the entire system of water supply. To determine the probability of dangerous events in the watershed, caption zone and distribution network it was necessary to define the probabilities of an a priori distribution for the Bayesian network construction. The determination of the a posteriori probability was obtained from information obtained in the field. The a priori information from the watershed was obtained through an experts consultation following the Delphi method. For the consultation, a questionnaire was designed with the variables classified in hazardous events and sent to working specialists in the fields of hydrology, water resources, water quality, soils, and geoprocessing. The selected variables (land use and soil utilization, water availability, urban and industrial activities, among other soil characteristics as slope, vegetation cover and superficial drainage. The results agreed upon together with experts were used in the probability tables definition for a priori distribution of the Bayesian network construction. The outcomes of the created network application, with the software UnBBayes for determining the probability of dangerous events in the contributing watershed to caption zone, presented the a posteriori probability of 78.53% in occurrence of hazardous events in the watershed to contribute towards change in water quality at the caption zone. This level of danger was classified as high, resulting in a water spring with potentially significant hazardous events that directly interfere in the water quality and therefore the on the water treatment. In the caption zone it was determined the contamination dangers propensity levels associated with the Ribeirão São Bartolomeu basin. The result of the Bayesian classification model application in the caption zone presented a "high" probability (90%) for the microbiological contamination level and a low probability (70% and 99%) for biological and chemical contamination levels, respectively. In the water treatment plant (ETAI/SAAE) the "decision tree" tool application is used to identify the Critical Control Points (CCP) and Points of Cares (PC) for detecting viruses, bacteria and protozoa identified dangers. It was identified the protozoan as PCC danger at all stages of treatment, except for disinfection which was identified as Point of Care (PA). In bacterial and viral dangers it has been identified CCP only for filtration. The result of the decision tree method utilization at each step of the treatment plant water was consistent with the historical result of the treatment plant (ETA-I/SAAE). monitoring. Thus, the HACCP system was presented as a preventive and appropriate tool to identify the hazards involved in water supply. It was able to provide important information, from the standpoint of setting priorities and preventive or corrective action adoption, rather than just referring to the evaluation of final product quality. The Bayesian classification model application results on the distribution network presented a danger propensity to the physical (80%) and hydro (60%) variables, which were considered xix high. The variable about water quality achieved a value considered as low (60%). The Bayesian inference has increasingly found more space for it s application, being en used in many studies on decision making for watershed and water supply system concerns. Finally, even with some study limitations in this paper, it is possible to conclude that the Bayesian inference technique utilization is a tool for hazard identification in water supply systems for human consumption, based on the Water Safety Plans guidelines. |
id |
UFV_6128f948bd390d07c93c53136b82e9fa |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/837 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Bezerra, Nolan Ribeirohttp://lattes.cnpq.br/7805750900666580Vieira, Carlos Antonio Oliveirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728250D0Bevilacqua, Paula Diashttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727999P6Bastos, Rafael Kopschitz Xavierhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781284H6Martins Filho, Sebastiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5Cerqueira, Daniel Adolphohttp://lattes.cnpq.br/72434870834369022015-03-26T12:34:13Z2013-06-262015-03-26T12:34:13Z2011-02-25BEZERRA, Nolan Ribeiro. Application of bayesian networks in hazard identification systems water supply for human consumption: a case study in the municipality of Viçosa, Minas Gerais. 2011. 185 f. Tese (Doutorado em Geotecnia) - Universidade Federal de Viçosa, Viçosa, 2011.http://locus.ufv.br/handle/123456789/837This paper aims to apply principles of Bayesian networks as a tool to estimate the occurrence probability of hazards in the watershed, the source water uptaking and distribution network, and to apply the Hazard Analysis and Critical Control Points System (HACCPS) to identify hazards at each stage on the water treatment plant, through a case study involving the city of Viçosa (Minas Gerais/Brazil). To assist in the identification of hazards associated with the water supply system within the watershed, caption zone and distribution network was adopted a probabilistic classifier, called Bayesian learning algorithm, which was used in the construction of the Bayesian network. For the Bayesian network modeling, it was used the public domain software UnBBayes, developed by the Artificial Intelligence Group at the University of Brasilia (UnB). In the water treatment plant it was used the Hazard Analysis and Critical Control Points System (HACCP) to identify hazards at each stage of treatment (coagulation / rapid mixing, flocculation, sedimentation, rapid filtration and disinfection). The hazard identification and risk characterization were made from a survey of secondary and primary data in the entire system of water supply. To determine the probability of dangerous events in the watershed, caption zone and distribution network it was necessary to define the probabilities of an a priori distribution for the Bayesian network construction. The determination of the a posteriori probability was obtained from information obtained in the field. The a priori information from the watershed was obtained through an experts consultation following the Delphi method. For the consultation, a questionnaire was designed with the variables classified in hazardous events and sent to working specialists in the fields of hydrology, water resources, water quality, soils, and geoprocessing. The selected variables (land use and soil utilization, water availability, urban and industrial activities, among other soil characteristics as slope, vegetation cover and superficial drainage. The results agreed upon together with experts were used in the probability tables definition for a priori distribution of the Bayesian network construction. The outcomes of the created network application, with the software UnBBayes for determining the probability of dangerous events in the contributing watershed to caption zone, presented the a posteriori probability of 78.53% in occurrence of hazardous events in the watershed to contribute towards change in water quality at the caption zone. This level of danger was classified as high, resulting in a water spring with potentially significant hazardous events that directly interfere in the water quality and therefore the on the water treatment. In the caption zone it was determined the contamination dangers propensity levels associated with the Ribeirão São Bartolomeu basin. The result of the Bayesian classification model application in the caption zone presented a "high" probability (90%) for the microbiological contamination level and a low probability (70% and 99%) for biological and chemical contamination levels, respectively. In the water treatment plant (ETAI/SAAE) the "decision tree" tool application is used to identify the Critical Control Points (CCP) and Points of Cares (PC) for detecting viruses, bacteria and protozoa identified dangers. It was identified the protozoan as PCC danger at all stages of treatment, except for disinfection which was identified as Point of Care (PA). In bacterial and viral dangers it has been identified CCP only for filtration. The result of the decision tree method utilization at each step of the treatment plant water was consistent with the historical result of the treatment plant (ETA-I/SAAE). monitoring. Thus, the HACCP system was presented as a preventive and appropriate tool to identify the hazards involved in water supply. It was able to provide important information, from the standpoint of setting priorities and preventive or corrective action adoption, rather than just referring to the evaluation of final product quality. The Bayesian classification model application results on the distribution network presented a danger propensity to the physical (80%) and hydro (60%) variables, which were considered xix high. The variable about water quality achieved a value considered as low (60%). The Bayesian inference has increasingly found more space for it s application, being en used in many studies on decision making for watershed and water supply system concerns. Finally, even with some study limitations in this paper, it is possible to conclude that the Bayesian inference technique utilization is a tool for hazard identification in water supply systems for human consumption, based on the Water Safety Plans guidelines.Este trabalho tem por objetivo aplicar os princípios das redes Bayesianas como ferramenta para estimar a probabilidade de ocorrência dos perigos na bacia hidrográfica, manancial de captação e rede de distribuição e o uso do Sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) para identificar perigos em cada etapa da estação de tratamento de água, por meio de estudo de caso envolvendo o município de Viçosa (Minas Gerais/Brasil). Para auxiliar na identificação de perigos associados ao sistema de abastecimento de água no âmbito da bacia hidrográfica, zona de captação e rede distribuição foi adotado um classificador probabilístico, denominado de algoritmo de aprendizagem Bayesiana, utilizado na construção da rede Bayesiana. Na modelagem da rede Bayesiana, utilizouse o UnBBayes, um software de domínio público desenvolvido pelo Grupo de Inteligência Artificial da Universidade de Brasília (UnB). Na estação de tratamento de água foi utilizado o Sistema de Análise de Perigos e Pontos Críticos de Controle (APPCC) para identificar é priorizar os perigos em cada etapa do tratamento (coagulação / mistura rápida, floculação, decantação, filtração rápida e desinfecção). A identificação de perigos e a caracterização dos riscos foram feitas, a partir de um levantamento de dados secundários e primários, em todo o sistema de abastecimento de água. Para determinar a probabilidade de ocorrência dos eventos perigosos na bacia hidrográfica, zona de captação e rede de distribuição foi necessário definir as probabilidades de distribuição a priori para construção da rede Bayesiana. A determinação da probabilidade a posteriori foi obtida a partir das informações colhidas em campo. As informações a priori na bacia hidrográfica foram obtidas, por meio de uma consulta aos especialistas utilizando o método Delphi. Para a realização da consulta foi elaborado um questionário, com as variáveis classificadas em eventos perigosos, enviado aos especialistas que atuam nas áreas de hidrologia, recursos hídricos, qualidade de água, solos e geoprocessamento. As variáveis selecionadas foram o uso e ocupação da superfície do solo, disponibilidade hídrica, atividades urbanas, industriais, dentre outras características do solo, declividade, cobertura vegetal e escoamento superficial. Os resultados sistematizados junto aos especialistas foram utilizados na definição das tabelas de probabilidade de distribuição a priori para construção da rede Bayesiana. O resultado da aplicação da rede criada com o software UnBBayes, para a determinação da probabilidade de ocorrência dos eventos perigosos na bacia hidrográfica contribuinte à zona de captação, apresentou uma probabilidade a posteriori de 78,53% para que a ocorrência de eventos perigosos na bacia hidrográfica que contribuíssem para alteração da qualidade da água na zona de captação. Esse nível de perigo foi classificado como alto, resultando em um manancial com eventos perigosos potencialmente significativos que possam interferir diretamente na qualidade da água e, consequentemente, no seu tratamento. Na zona de captação foi determinada a probabilidade de ocorrência do nível de contaminação com relação aos perigos associados à bacia hidrográfica do Ribeirão São Bartolomeu. O resultado da aplicação do modelo de classificação Bayesiana na zona de captação apresentou uma probabilidade alta (90%) para o nível de contaminação microbiológico e baixa (70% e 99%) para os níveis de contaminação biológicos e químicos, respectivamente. Na estação de tratamento de água (ETAI / SAAE) a aplicação da ferramenta árvore de decisão foi utilizada para a identificação dos Pontos Críticos de Controle (PCC) e Pontos de Atenção (PA) para detectar os perigos vírus, bactérias e protozoários. Foi identificado, apenas PCC para protozoários como perigo em todas as etapas do tratamento, exceto na desinfecção que foi identificada com Ponto de Atenção (PA). Para os perigos decorrentes de bactérias e vírus, foram identificados PCC apenas para filtração. O resultado da aplicação do método da árvore de decisão em cada etapa da estação de tratamento de água foi coerente com o resultado histórico do monitoramento da estação de tratamento (ETA-I / SAAE). Assim, o sistema APPCC apresentou-se como ferramenta preventiva, sendo adequada para identificar os perigos inerentes ao abastecimento de água. Forneceu indicações importantes, do ponto de vista de definição de prioridades e de adoção de medidas preventivas ou mesmo corretivas, ao invés de apenas remeter à avaliação da qualidade final do produto. A aplicação do modelo de classificação Bayesiana na rede de distribuição apresentou probabilidade de ocorrência de perigo para as variáveis física (80%) e hidráulica foram (60%) altos. Já a variável qualidade da água obteve valor baixo (60%). A inferência Bayesiana tem ganhado cada vez mais espaço, sendo utilizada em inúmeros trabalhos para tomada de decisão na bacia hidrográfica, bem como no sistema de abastecimento de água. Por fim, mesmo com algumas limitações deste estudo, conclui-se que a aplicação de técnicas de inferências Bayesianas pode ser utilizada como ferramenta de identificação de perigos em sistemas de abastecimento de água para consumo humano, com base nos preceitos dos Planos de Segurança da Água.application/pdfporUniversidade Federal de ViçosaDoutorado em Engenharia CivilUFVBRGeotecniaPlanos de segurança da águaAvaliação de riscoRedes BayesianasWater safety plans, Risk assessmentBayesian networksCNPQ::ENGENHARIAS::ENGENHARIA SANITARIA::SANEAMENTO BASICO::TECNICAS DE ABASTECIMENTO DA AGUAAplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas GeraisApplication of bayesian networks in hazard identification systems water supply for human consumption: a case study in the municipality of Viçosa, Minas Geraisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf2816460https://locus.ufv.br//bitstream/123456789/837/1/texto%20completo.pdf1bc5176adc6fabe855dfb3a0b45360f5MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain361080https://locus.ufv.br//bitstream/123456789/837/2/texto%20completo.pdf.txt18d28ebbff1fba5acd0852a9741f5795MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3515https://locus.ufv.br//bitstream/123456789/837/3/texto%20completo.pdf.jpg92ee727b04da2775ff8fd43eeb820960MD53123456789/8372016-04-06 23:15:52.087oai:locus.ufv.br:123456789/837Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-07T02:15:52LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
dc.title.alternative.eng.fl_str_mv |
Application of bayesian networks in hazard identification systems water supply for human consumption: a case study in the municipality of Viçosa, Minas Gerais |
title |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
spellingShingle |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais Bezerra, Nolan Ribeiro Planos de segurança da água Avaliação de risco Redes Bayesianas Water safety plans, Risk assessment Bayesian networks CNPQ::ENGENHARIAS::ENGENHARIA SANITARIA::SANEAMENTO BASICO::TECNICAS DE ABASTECIMENTO DA AGUA |
title_short |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
title_full |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
title_fullStr |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
title_full_unstemmed |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
title_sort |
Aplicação de Redes Bayesianas na Identificação de Perigos em Sistemas de Abastecimento de Água para Consumo Humano: Estudo de caso no Município de Viçosa-Minas Gerais |
author |
Bezerra, Nolan Ribeiro |
author_facet |
Bezerra, Nolan Ribeiro |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/7805750900666580 |
dc.contributor.author.fl_str_mv |
Bezerra, Nolan Ribeiro |
dc.contributor.advisor-co1.fl_str_mv |
Vieira, Carlos Antonio Oliveira |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728250D0 |
dc.contributor.advisor-co2.fl_str_mv |
Bevilacqua, Paula Dias |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727999P6 |
dc.contributor.advisor1.fl_str_mv |
Bastos, Rafael Kopschitz Xavier |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781284H6 |
dc.contributor.referee1.fl_str_mv |
Martins Filho, Sebastião |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5 |
dc.contributor.referee2.fl_str_mv |
Cerqueira, Daniel Adolpho |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/7243487083436902 |
contributor_str_mv |
Vieira, Carlos Antonio Oliveira Bevilacqua, Paula Dias Bastos, Rafael Kopschitz Xavier Martins Filho, Sebastião Cerqueira, Daniel Adolpho |
dc.subject.por.fl_str_mv |
Planos de segurança da água Avaliação de risco Redes Bayesianas |
topic |
Planos de segurança da água Avaliação de risco Redes Bayesianas Water safety plans, Risk assessment Bayesian networks CNPQ::ENGENHARIAS::ENGENHARIA SANITARIA::SANEAMENTO BASICO::TECNICAS DE ABASTECIMENTO DA AGUA |
dc.subject.eng.fl_str_mv |
Water safety plans, Risk assessment Bayesian networks |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA SANITARIA::SANEAMENTO BASICO::TECNICAS DE ABASTECIMENTO DA AGUA |
description |
This paper aims to apply principles of Bayesian networks as a tool to estimate the occurrence probability of hazards in the watershed, the source water uptaking and distribution network, and to apply the Hazard Analysis and Critical Control Points System (HACCPS) to identify hazards at each stage on the water treatment plant, through a case study involving the city of Viçosa (Minas Gerais/Brazil). To assist in the identification of hazards associated with the water supply system within the watershed, caption zone and distribution network was adopted a probabilistic classifier, called Bayesian learning algorithm, which was used in the construction of the Bayesian network. For the Bayesian network modeling, it was used the public domain software UnBBayes, developed by the Artificial Intelligence Group at the University of Brasilia (UnB). In the water treatment plant it was used the Hazard Analysis and Critical Control Points System (HACCP) to identify hazards at each stage of treatment (coagulation / rapid mixing, flocculation, sedimentation, rapid filtration and disinfection). The hazard identification and risk characterization were made from a survey of secondary and primary data in the entire system of water supply. To determine the probability of dangerous events in the watershed, caption zone and distribution network it was necessary to define the probabilities of an a priori distribution for the Bayesian network construction. The determination of the a posteriori probability was obtained from information obtained in the field. The a priori information from the watershed was obtained through an experts consultation following the Delphi method. For the consultation, a questionnaire was designed with the variables classified in hazardous events and sent to working specialists in the fields of hydrology, water resources, water quality, soils, and geoprocessing. The selected variables (land use and soil utilization, water availability, urban and industrial activities, among other soil characteristics as slope, vegetation cover and superficial drainage. The results agreed upon together with experts were used in the probability tables definition for a priori distribution of the Bayesian network construction. The outcomes of the created network application, with the software UnBBayes for determining the probability of dangerous events in the contributing watershed to caption zone, presented the a posteriori probability of 78.53% in occurrence of hazardous events in the watershed to contribute towards change in water quality at the caption zone. This level of danger was classified as high, resulting in a water spring with potentially significant hazardous events that directly interfere in the water quality and therefore the on the water treatment. In the caption zone it was determined the contamination dangers propensity levels associated with the Ribeirão São Bartolomeu basin. The result of the Bayesian classification model application in the caption zone presented a "high" probability (90%) for the microbiological contamination level and a low probability (70% and 99%) for biological and chemical contamination levels, respectively. In the water treatment plant (ETAI/SAAE) the "decision tree" tool application is used to identify the Critical Control Points (CCP) and Points of Cares (PC) for detecting viruses, bacteria and protozoa identified dangers. It was identified the protozoan as PCC danger at all stages of treatment, except for disinfection which was identified as Point of Care (PA). In bacterial and viral dangers it has been identified CCP only for filtration. The result of the decision tree method utilization at each step of the treatment plant water was consistent with the historical result of the treatment plant (ETA-I/SAAE). monitoring. Thus, the HACCP system was presented as a preventive and appropriate tool to identify the hazards involved in water supply. It was able to provide important information, from the standpoint of setting priorities and preventive or corrective action adoption, rather than just referring to the evaluation of final product quality. The Bayesian classification model application results on the distribution network presented a danger propensity to the physical (80%) and hydro (60%) variables, which were considered xix high. The variable about water quality achieved a value considered as low (60%). The Bayesian inference has increasingly found more space for it s application, being en used in many studies on decision making for watershed and water supply system concerns. Finally, even with some study limitations in this paper, it is possible to conclude that the Bayesian inference technique utilization is a tool for hazard identification in water supply systems for human consumption, based on the Water Safety Plans guidelines. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-02-25 |
dc.date.available.fl_str_mv |
2013-06-26 2015-03-26T12:34:13Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T12:34:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BEZERRA, Nolan Ribeiro. Application of bayesian networks in hazard identification systems water supply for human consumption: a case study in the municipality of Viçosa, Minas Gerais. 2011. 185 f. Tese (Doutorado em Geotecnia) - Universidade Federal de Viçosa, Viçosa, 2011. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/837 |
identifier_str_mv |
BEZERRA, Nolan Ribeiro. Application of bayesian networks in hazard identification systems water supply for human consumption: a case study in the municipality of Viçosa, Minas Gerais. 2011. 185 f. Tese (Doutorado em Geotecnia) - Universidade Federal de Viçosa, Viçosa, 2011. |
url |
http://locus.ufv.br/handle/123456789/837 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Doutorado em Engenharia Civil |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Geotecnia |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/837/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/837/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/837/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
1bc5176adc6fabe855dfb3a0b45360f5 18d28ebbff1fba5acd0852a9741f5795 92ee727b04da2775ff8fd43eeb820960 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213119646662656 |