Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus

Detalhes bibliográficos
Autor(a) principal: Reis, Angélica Pataro
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/285
Resumo: The enzyme α-galactosidase (α-D-galactoside galactohydrolase, EC 3.2.1.22) catalyzes the cleavage of α-1,6-galactosyl terminal residues present in different substrates, including linear and branching oligosaccharides, polysaccharides and synthetic substrates such as p-hitrophenyl-α-1,6-galactosyl -D- galactopyranoside (ρNPαGal). The α-galactosidase is very important because of its potential industrial uses. Among these uses, it stands out the capacity to hydrolyze raffinose oligosaccharides (RO), which are the main responsible factors for gastrointestinal disorders related with the ingestion of soybean-derived products. The intestinal mucous membrane of humans and monogastric animals lacks the α-galactosidase enzyme, which is essential for the hydrolysis of these oligosaccharides. The reduction of these soybeanderived sugars can therefore improve the nutritional quality of these foods. The objective of this work was to produce, purify and characterize α-galactosidases from Aspergillus terreus, evaluating its hydrolytic capacity on raffinose oligosaccharides (RO) found in soybean products. The fungus Aspergillus terreus grew in mineral liquid medium containing wheat bran as carbon source for 168 hours at 28° C. Gel-filtration, hydrophobic interaction, ion exchange and affinity chromatographies were used to obtain purified α-galactosidase E1 and partially purified E2. Native gel was also used as the last stage of α-galactosidase E1 purification. Maximum activities of α-galactosidases E1 and E2 were detected at pH 5 and 5.5 and at the temperatures 60 and 50 oC, respectively. Enzyme α-galactosidase E1 maintained 90% of its initial activity when pre-incubated for 12 hours at 55 °C, whereas α-galactosidase E2 maintained only 5% of its activity when pre-incubated in the same conditions. KM values for ρNPαGal, mellibiose, stachyose and raffinose for α-galactosidase E1 were 0.66, 1.92, 10.94 and 27.93 mM, respectively, whereas for α- galactosidase E2 the KM for ρNPαGal and mellibiose was 0.20 and 20.14 mM, respectively. The α-galactosidases showed specificity for galactose at α position, hydrolyzing synthetic ρNPαGal substrate, mellibiose, stachyose and raffinose. Copper sulfate, mercury chloride, silver nitrate and SDS totally inactivated the two enzymes, whereas zinc sulfate totally inactivated α-galactosidase E1 and reduced α-galactosidase E2 activity by 48%. The α-galactosidase E2 in the presence of ρNPαGal substrate underwent competitive inhibition by galactose (Ki 0.76 mM). Activation energy of ρNPαGal substrate was found to be 51.17 and 36.71 kJ/mol for α-galactosidases E1 and E2, respectively. The mellibiose substrate had activation energy for α- galactosidase E1 and E2 of 53.83 and 39.83 kJ/mol respectively. Substrates raffinose and stachyose had activation energy of 55.18 and 42.81 kJ/mol respectively, for α-galactosidase E1. The treatments of defatted soybean extract with α-galactosidases E1 and E2 resulted in 100% reduction in stachyose after 12 hours of incubation, however raffinose still remained 24% higher than the initial level, which can be explained by the fact that this sugar is one of the products of stachyose hydrolysis, causing therefore its accumulation. After 12 hours of incubation of α-galactosidase E2 with the defatted extract, 18 and 25% of raffinose and stachyose were hydrolyzed, respectively. Therefore, it can be concluded that α- galactosidase E1 can be preferably used to reduce RO, being indicated for the industrial processing of these sugars.
id UFV_6760d0687e411cd25816c37deddcf5b0
oai_identifier_str oai:locus.ufv.br:123456789/285
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Reis, Angélica Patarohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764343T2Guimarães, Valéria Montezehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3Oliveira, Maria Goreti de Almeidahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790894D6Rezende, Sebastião Tavares dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787599A3Nagem, Ronaldo Alves Pintohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792617D6Queiroz, José Humberto dehttp://lattes.cnpq.br/4881556650652069Fietto, Juliana Lopes Rangelhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790238D02015-03-26T12:15:11Z2008-03-042015-03-26T12:15:11Z2007-08-31REIS, Angélica Pataro. Purification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreus. 2007. 124 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2007.http://locus.ufv.br/handle/123456789/285The enzyme α-galactosidase (α-D-galactoside galactohydrolase, EC 3.2.1.22) catalyzes the cleavage of α-1,6-galactosyl terminal residues present in different substrates, including linear and branching oligosaccharides, polysaccharides and synthetic substrates such as p-hitrophenyl-α-1,6-galactosyl -D- galactopyranoside (ρNPαGal). The α-galactosidase is very important because of its potential industrial uses. Among these uses, it stands out the capacity to hydrolyze raffinose oligosaccharides (RO), which are the main responsible factors for gastrointestinal disorders related with the ingestion of soybean-derived products. The intestinal mucous membrane of humans and monogastric animals lacks the α-galactosidase enzyme, which is essential for the hydrolysis of these oligosaccharides. The reduction of these soybeanderived sugars can therefore improve the nutritional quality of these foods. The objective of this work was to produce, purify and characterize α-galactosidases from Aspergillus terreus, evaluating its hydrolytic capacity on raffinose oligosaccharides (RO) found in soybean products. The fungus Aspergillus terreus grew in mineral liquid medium containing wheat bran as carbon source for 168 hours at 28° C. Gel-filtration, hydrophobic interaction, ion exchange and affinity chromatographies were used to obtain purified α-galactosidase E1 and partially purified E2. Native gel was also used as the last stage of α-galactosidase E1 purification. Maximum activities of α-galactosidases E1 and E2 were detected at pH 5 and 5.5 and at the temperatures 60 and 50 oC, respectively. Enzyme α-galactosidase E1 maintained 90% of its initial activity when pre-incubated for 12 hours at 55 °C, whereas α-galactosidase E2 maintained only 5% of its activity when pre-incubated in the same conditions. KM values for ρNPαGal, mellibiose, stachyose and raffinose for α-galactosidase E1 were 0.66, 1.92, 10.94 and 27.93 mM, respectively, whereas for α- galactosidase E2 the KM for ρNPαGal and mellibiose was 0.20 and 20.14 mM, respectively. The α-galactosidases showed specificity for galactose at α position, hydrolyzing synthetic ρNPαGal substrate, mellibiose, stachyose and raffinose. Copper sulfate, mercury chloride, silver nitrate and SDS totally inactivated the two enzymes, whereas zinc sulfate totally inactivated α-galactosidase E1 and reduced α-galactosidase E2 activity by 48%. The α-galactosidase E2 in the presence of ρNPαGal substrate underwent competitive inhibition by galactose (Ki 0.76 mM). Activation energy of ρNPαGal substrate was found to be 51.17 and 36.71 kJ/mol for α-galactosidases E1 and E2, respectively. The mellibiose substrate had activation energy for α- galactosidase E1 and E2 of 53.83 and 39.83 kJ/mol respectively. Substrates raffinose and stachyose had activation energy of 55.18 and 42.81 kJ/mol respectively, for α-galactosidase E1. The treatments of defatted soybean extract with α-galactosidases E1 and E2 resulted in 100% reduction in stachyose after 12 hours of incubation, however raffinose still remained 24% higher than the initial level, which can be explained by the fact that this sugar is one of the products of stachyose hydrolysis, causing therefore its accumulation. After 12 hours of incubation of α-galactosidase E2 with the defatted extract, 18 and 25% of raffinose and stachyose were hydrolyzed, respectively. Therefore, it can be concluded that α- galactosidase E1 can be preferably used to reduce RO, being indicated for the industrial processing of these sugars.A enzima α-Galactosidase (α-D-galactosideo galactohidrolase, EC 3.2.1.22) catalisa a clivagem de resíduos terminais α-1,6- galactosil presentes em vários substratos, incluindo oligossacarídeos lineares e ramificados, polissacarídeos e substratos sintéticos tal como o p-nitrofenil-α-D- galactopiranosídeo (ρNPαGal). A α-galactosidase é de grande importância devido seu potencial em aplicações industriais. Dentre estas a capacidade em hidrolisar os oligossacarídeos de rafinose (RO) que são os principais fatores responsáveis por distúrbios gastrintestinais relacionados com a ingestão de produtos derivados de soja. A mucosa intestinal de humanos e animais monogástricos não possui a enzima α-galactosidase, essencial para a hidrólise desses oligossacarídeos. Portanto a redução desses açúcares nos derivados de soja poderá melhorar as qualidades nutricionais desses alimentos. O objetivo deste trabalho foi produzir, purificar e caracterizar α- galactosidases de Aspergillus terreus, avaliando sua capacidade hidrolítica sobre os oligossacarídeos de rafinose (RO) presentes em produtos de soja. O fungo Aspergillus terreus cresceu em meio mineral líquido contendo farelo de trigo como fonte de carbono por 168 horas a 28 °C. Para obtenção da α-galactosidase purificada E1 e parcialmente purificada E2, foram utilizadas cromatografias de gel filtração, interação hidrofóbica, troca iônica e afinidade. Foi também utilizado gel nativo como última etapa de purificação da α-galactosidase E1. Atividades máximas das α-galactosidases E1 e E2 foram detectadas em pH 5,0 e 5,5 e nas temperaturas de 60 e 50 oC, respectivamente. A enzima α-galactosidase E1 manteve 90% de sua atividade inicial quando pré-incubada por 12 horas a 55 °C e a α-galactosidase E2 manteve apenas 5 % da sua atividade quando pré-incubada nas mesmas condições. Os valores da KM para ρNPαGal, melibiose, estaquiose e rafinose para a α-galactosidase E1 foram de 0,66, 1,92, 10,94 e 27,93 mM, respectivamente, enquanto que, para a α-galactosidase E2 o KM para ρNPαGal e melibiose foram de 0,20 e 20,14 mM, respectivamente. As α-galactosidases apresentaram especificidade para galactose em posição α, hidrolisando o substrato sintético ρNPαGal, estaquiose, rafinose e melibiose. Sulfato de cobre, cloreto de mercúrio, nitrato de prata e SDS inativaram totalmentes as duas enzimas, enquanto que sulfato de zinco inativou totalmente a α-galactosidase E1 e reduziu 48 % a atividade da α-galactosidase E2. A α-galactosidase E2 na presença do substrato ρNPαGal sofreu inibição competitiva com galactose (Ki 0,76 mM). Para o substrato ρNPαGal foi encontrada uma energia de ativação igual a 51,17 e 36,71 kJ/mol para as α-galactosidases E1 e E2, respectivamente. Para o substrato melibiose a energia de ativação para a α-galactosidase E1 foi de 53,83 kJ/mol e para a E2 foi 39,83 kJ/mol. Para os substratos rafinose e estaquiose, a energia de ativação encontrada foi de 55,18 e 42,81 kJ/mol, respectivamente, para a α-galactosidase E1. Os resultados dos tratamentos do extrato desengordurado de soja com as α-galactosidases E1 e E2 mostraram uma redução de 100% da estaquiose após 12 horas de incubação, porém a rafinose ainda permaneceu 24 % a mais que o teor inicial, fenômeno que pode ser justificado pelo fato deste açúcar ser um dos produtos da hidrólise da estaquiose havendo então um acúmulo de rafinose. Para a α-galactosidase E2, ao final de 12 horas de incubação com o extrato desengordurado, 18 e 25 % dos açúcares rafinose e estaquiose foram hidrolisados, respectivamente. Portanto, observa-se que preferencialmente a α-galactosidase E1 pode ser utilizada para redução dos RO, sendo indicada para utilização industrial no processamento destes açúcares.Universidade Federal dos Vales do Jequitinhonha e Mucuriapplication/pdfporUniversidade Federal de ViçosaDoutorado em Bioquímica AgrícolaUFVBRBioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animalα-galactosidasesAspergillus terreusCaracterização bioquímicaα-galactosidasesAspergillus terreusBiochemical characterizationCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIAPurificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreusPurification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1007305https://locus.ufv.br//bitstream/123456789/285/1/texto%20completo.pdf07fdc3ceddf55451d93e1ff1d729a35eMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain182123https://locus.ufv.br//bitstream/123456789/285/2/texto%20completo.pdf.txt200988a33e08467c0148b6929fd721d1MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3675https://locus.ufv.br//bitstream/123456789/285/3/texto%20completo.pdf.jpg273ff76ef41f9b8d15db937f79991762MD53123456789/2852017-10-06 15:30:14.483oai:locus.ufv.br:123456789/285Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-10-06T18:30:14LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
dc.title.alternative.eng.fl_str_mv Purification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreus
title Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
spellingShingle Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
Reis, Angélica Pataro
α-galactosidases
Aspergillus terreus
Caracterização bioquímica
α-galactosidases
Aspergillus terreus
Biochemical characterization
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIA
title_short Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
title_full Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
title_fullStr Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
title_full_unstemmed Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
title_sort Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
author Reis, Angélica Pataro
author_facet Reis, Angélica Pataro
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764343T2
dc.contributor.author.fl_str_mv Reis, Angélica Pataro
dc.contributor.advisor-co1.fl_str_mv Guimarães, Valéria Monteze
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3
dc.contributor.advisor-co2.fl_str_mv Oliveira, Maria Goreti de Almeida
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790894D6
dc.contributor.advisor1.fl_str_mv Rezende, Sebastião Tavares de
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787599A3
dc.contributor.referee1.fl_str_mv Nagem, Ronaldo Alves Pinto
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4792617D6
dc.contributor.referee2.fl_str_mv Queiroz, José Humberto de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/4881556650652069
dc.contributor.referee3.fl_str_mv Fietto, Juliana Lopes Rangel
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790238D0
contributor_str_mv Guimarães, Valéria Monteze
Oliveira, Maria Goreti de Almeida
Rezende, Sebastião Tavares de
Nagem, Ronaldo Alves Pinto
Queiroz, José Humberto de
Fietto, Juliana Lopes Rangel
dc.subject.por.fl_str_mv α-galactosidases
Aspergillus terreus
Caracterização bioquímica
topic α-galactosidases
Aspergillus terreus
Caracterização bioquímica
α-galactosidases
Aspergillus terreus
Biochemical characterization
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIA
dc.subject.eng.fl_str_mv α-galactosidases
Aspergillus terreus
Biochemical characterization
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::ENZIMOLOGIA
description The enzyme α-galactosidase (α-D-galactoside galactohydrolase, EC 3.2.1.22) catalyzes the cleavage of α-1,6-galactosyl terminal residues present in different substrates, including linear and branching oligosaccharides, polysaccharides and synthetic substrates such as p-hitrophenyl-α-1,6-galactosyl -D- galactopyranoside (ρNPαGal). The α-galactosidase is very important because of its potential industrial uses. Among these uses, it stands out the capacity to hydrolyze raffinose oligosaccharides (RO), which are the main responsible factors for gastrointestinal disorders related with the ingestion of soybean-derived products. The intestinal mucous membrane of humans and monogastric animals lacks the α-galactosidase enzyme, which is essential for the hydrolysis of these oligosaccharides. The reduction of these soybeanderived sugars can therefore improve the nutritional quality of these foods. The objective of this work was to produce, purify and characterize α-galactosidases from Aspergillus terreus, evaluating its hydrolytic capacity on raffinose oligosaccharides (RO) found in soybean products. The fungus Aspergillus terreus grew in mineral liquid medium containing wheat bran as carbon source for 168 hours at 28° C. Gel-filtration, hydrophobic interaction, ion exchange and affinity chromatographies were used to obtain purified α-galactosidase E1 and partially purified E2. Native gel was also used as the last stage of α-galactosidase E1 purification. Maximum activities of α-galactosidases E1 and E2 were detected at pH 5 and 5.5 and at the temperatures 60 and 50 oC, respectively. Enzyme α-galactosidase E1 maintained 90% of its initial activity when pre-incubated for 12 hours at 55 °C, whereas α-galactosidase E2 maintained only 5% of its activity when pre-incubated in the same conditions. KM values for ρNPαGal, mellibiose, stachyose and raffinose for α-galactosidase E1 were 0.66, 1.92, 10.94 and 27.93 mM, respectively, whereas for α- galactosidase E2 the KM for ρNPαGal and mellibiose was 0.20 and 20.14 mM, respectively. The α-galactosidases showed specificity for galactose at α position, hydrolyzing synthetic ρNPαGal substrate, mellibiose, stachyose and raffinose. Copper sulfate, mercury chloride, silver nitrate and SDS totally inactivated the two enzymes, whereas zinc sulfate totally inactivated α-galactosidase E1 and reduced α-galactosidase E2 activity by 48%. The α-galactosidase E2 in the presence of ρNPαGal substrate underwent competitive inhibition by galactose (Ki 0.76 mM). Activation energy of ρNPαGal substrate was found to be 51.17 and 36.71 kJ/mol for α-galactosidases E1 and E2, respectively. The mellibiose substrate had activation energy for α- galactosidase E1 and E2 of 53.83 and 39.83 kJ/mol respectively. Substrates raffinose and stachyose had activation energy of 55.18 and 42.81 kJ/mol respectively, for α-galactosidase E1. The treatments of defatted soybean extract with α-galactosidases E1 and E2 resulted in 100% reduction in stachyose after 12 hours of incubation, however raffinose still remained 24% higher than the initial level, which can be explained by the fact that this sugar is one of the products of stachyose hydrolysis, causing therefore its accumulation. After 12 hours of incubation of α-galactosidase E2 with the defatted extract, 18 and 25% of raffinose and stachyose were hydrolyzed, respectively. Therefore, it can be concluded that α- galactosidase E1 can be preferably used to reduce RO, being indicated for the industrial processing of these sugars.
publishDate 2007
dc.date.issued.fl_str_mv 2007-08-31
dc.date.available.fl_str_mv 2008-03-04
2015-03-26T12:15:11Z
dc.date.accessioned.fl_str_mv 2015-03-26T12:15:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv REIS, Angélica Pataro. Purification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreus. 2007. 124 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2007.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/285
identifier_str_mv REIS, Angélica Pataro. Purification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreus. 2007. 124 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2007.
url http://locus.ufv.br/handle/123456789/285
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Doutorado em Bioquímica Agrícola
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/285/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/285/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/285/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 07fdc3ceddf55451d93e1ff1d729a35e
200988a33e08467c0148b6929fd721d1
273ff76ef41f9b8d15db937f79991762
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213123493888000