Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods

Detalhes bibliográficos
Autor(a) principal: Ferreira, Gabriel W. D.
Data de Publicação: 2018
Outros Autores: Silva, Ivo R., Vasconcelos, Aline A., Roque, Jussara V., Silva, Eulene F., Teófilo, Reinaldo F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.talanta.2018.05.073
http://www.locus.ufv.br/handle/123456789/24396
Resumo: Near-infrared (NIR) spectroscopy and chemometric methods were used to predict the chemical properties of decomposing eucalyptus harvest residues to better understand the decomposition process of these materials. Leaves, twigs, branches, and bark from a decomposition experimental set up in commercial plantations were sampled for one year. The contents of carbon (C), nitrogen (N), extractives (EX), acid-soluble lignin (SL), Klason insoluble lignin (KL) and holocellulose (HC) were determined by the reference method in the collected samples. Principal component analysis (PCA) was employed to distinguish the types of harvest residues throughout the decomposition period. Multi-residue regression models were built from the NIR spectra using partial least squares regression (PLS). Two feature selection methods, i.e., ordered predictors selection (OPS) and genetic algorithm (GA), were applied and compared. The OPS and GA did not differ statistically; however, compared with the GA, OPS was more computationally efficient and selected fewer variables. Using the PLS-OPS models, the root mean square errors of prediction (RMSEP) for C, N, EX, SL, KL and HC were 19.70, 0.08, 0.74, 0.39, 28.13 and 33.99, respectively, and the prediction correlations (Rp) for these properties were 0.94, 0.99, 0.99, 0.99, 0.96 and 0.98, respectively. PLS-discriminant analysis (PLS-DA) was used to classify the samples over the decomposition time and provided a good separation. Some mismatches obtained in the modeled classes were explained by the differences in the decomposition rate and changes in the chemical composition of the different harvest residue components that were evaluated. The results showed the feasibility of NIR spectroscopy and chemometric methods to evaluate the chemistry of decomposing eucalyptus harvest residues, indicating that these methods can be used as rapid and inexpensive alternatives to conventional methods to help understand the decomposition process.
id UFV_69ea8ae0810b694e0badff6e7e6a85df
oai_identifier_str oai:locus.ufv.br:123456789/24396
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Ferreira, Gabriel W. D.Silva, Ivo R.Vasconcelos, Aline A.Roque, Jussara V.Silva, Eulene F.Teófilo, Reinaldo F.2019-04-09T13:52:07Z2019-04-09T13:52:07Z2018-10-010039-9140https://doi.org/10.1016/j.talanta.2018.05.073http://www.locus.ufv.br/handle/123456789/24396Near-infrared (NIR) spectroscopy and chemometric methods were used to predict the chemical properties of decomposing eucalyptus harvest residues to better understand the decomposition process of these materials. Leaves, twigs, branches, and bark from a decomposition experimental set up in commercial plantations were sampled for one year. The contents of carbon (C), nitrogen (N), extractives (EX), acid-soluble lignin (SL), Klason insoluble lignin (KL) and holocellulose (HC) were determined by the reference method in the collected samples. Principal component analysis (PCA) was employed to distinguish the types of harvest residues throughout the decomposition period. Multi-residue regression models were built from the NIR spectra using partial least squares regression (PLS). Two feature selection methods, i.e., ordered predictors selection (OPS) and genetic algorithm (GA), were applied and compared. The OPS and GA did not differ statistically; however, compared with the GA, OPS was more computationally efficient and selected fewer variables. Using the PLS-OPS models, the root mean square errors of prediction (RMSEP) for C, N, EX, SL, KL and HC were 19.70, 0.08, 0.74, 0.39, 28.13 and 33.99, respectively, and the prediction correlations (Rp) for these properties were 0.94, 0.99, 0.99, 0.99, 0.96 and 0.98, respectively. PLS-discriminant analysis (PLS-DA) was used to classify the samples over the decomposition time and provided a good separation. Some mismatches obtained in the modeled classes were explained by the differences in the decomposition rate and changes in the chemical composition of the different harvest residue components that were evaluated. The results showed the feasibility of NIR spectroscopy and chemometric methods to evaluate the chemistry of decomposing eucalyptus harvest residues, indicating that these methods can be used as rapid and inexpensive alternatives to conventional methods to help understand the decomposition process.engTalantaVolume 188, Pages 168-177, October 2018Elsevier B. V.info:eu-repo/semantics/openAccessEucalyptus harvest residuesNear-infrared spectroscopyPrincipal component analysisPartial least squaresDiscriminant analysisOrdered predictors selectionTemporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSoares, Emanuelle M.B.application/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf3122504https://locus.ufv.br//bitstream/123456789/24396/1/artigo.pdff5b2b34fb656fe32367f2be3e2329924MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/24396/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/243962019-04-09 10:53:50.59oai:locus.ufv.br:123456789/24396Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-04-09T13:53:50LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
title Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
spellingShingle Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
Ferreira, Gabriel W. D.
Eucalyptus harvest residues
Near-infrared spectroscopy
Principal component analysis
Partial least squares
Discriminant analysis
Ordered predictors selection
title_short Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
title_full Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
title_fullStr Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
title_full_unstemmed Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
title_sort Temporal decomposition sampling and chemical characterization of eucalyptus harvest residues using NIR spectroscopy and chemometric methods
author Ferreira, Gabriel W. D.
author_facet Ferreira, Gabriel W. D.
Silva, Ivo R.
Vasconcelos, Aline A.
Roque, Jussara V.
Silva, Eulene F.
Teófilo, Reinaldo F.
author_role author
author2 Silva, Ivo R.
Vasconcelos, Aline A.
Roque, Jussara V.
Silva, Eulene F.
Teófilo, Reinaldo F.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Ferreira, Gabriel W. D.
Silva, Ivo R.
Vasconcelos, Aline A.
Roque, Jussara V.
Silva, Eulene F.
Teófilo, Reinaldo F.
dc.subject.pt-BR.fl_str_mv Eucalyptus harvest residues
Near-infrared spectroscopy
Principal component analysis
Partial least squares
Discriminant analysis
Ordered predictors selection
topic Eucalyptus harvest residues
Near-infrared spectroscopy
Principal component analysis
Partial least squares
Discriminant analysis
Ordered predictors selection
description Near-infrared (NIR) spectroscopy and chemometric methods were used to predict the chemical properties of decomposing eucalyptus harvest residues to better understand the decomposition process of these materials. Leaves, twigs, branches, and bark from a decomposition experimental set up in commercial plantations were sampled for one year. The contents of carbon (C), nitrogen (N), extractives (EX), acid-soluble lignin (SL), Klason insoluble lignin (KL) and holocellulose (HC) were determined by the reference method in the collected samples. Principal component analysis (PCA) was employed to distinguish the types of harvest residues throughout the decomposition period. Multi-residue regression models were built from the NIR spectra using partial least squares regression (PLS). Two feature selection methods, i.e., ordered predictors selection (OPS) and genetic algorithm (GA), were applied and compared. The OPS and GA did not differ statistically; however, compared with the GA, OPS was more computationally efficient and selected fewer variables. Using the PLS-OPS models, the root mean square errors of prediction (RMSEP) for C, N, EX, SL, KL and HC were 19.70, 0.08, 0.74, 0.39, 28.13 and 33.99, respectively, and the prediction correlations (Rp) for these properties were 0.94, 0.99, 0.99, 0.99, 0.96 and 0.98, respectively. PLS-discriminant analysis (PLS-DA) was used to classify the samples over the decomposition time and provided a good separation. Some mismatches obtained in the modeled classes were explained by the differences in the decomposition rate and changes in the chemical composition of the different harvest residue components that were evaluated. The results showed the feasibility of NIR spectroscopy and chemometric methods to evaluate the chemistry of decomposing eucalyptus harvest residues, indicating that these methods can be used as rapid and inexpensive alternatives to conventional methods to help understand the decomposition process.
publishDate 2018
dc.date.issued.fl_str_mv 2018-10-01
dc.date.accessioned.fl_str_mv 2019-04-09T13:52:07Z
dc.date.available.fl_str_mv 2019-04-09T13:52:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.talanta.2018.05.073
http://www.locus.ufv.br/handle/123456789/24396
dc.identifier.issn.none.fl_str_mv 0039-9140
identifier_str_mv 0039-9140
url https://doi.org/10.1016/j.talanta.2018.05.073
http://www.locus.ufv.br/handle/123456789/24396
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 188, Pages 168-177, October 2018
dc.rights.driver.fl_str_mv Elsevier B. V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B. V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Talanta
publisher.none.fl_str_mv Talanta
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/24396/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/24396/2/license.txt
bitstream.checksum.fl_str_mv f5b2b34fb656fe32367f2be3e2329924
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213032484831232