The diversification of begomovirus populations is predominantly driven by mutational dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1093/ve/vex005 http://www.locus.ufv.br/handle/123456789/12282 |
Resumo: | Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics. |
id |
UFV_6a9c96987da892dfe0c2f442c1f7bae8 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/12282 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
The diversification of begomovirus populations is predominantly driven by mutational dynamicsEvolutionGeminivirusGenetic variabilityPhylogenyBegomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics.Virus Evolution2017-10-23T16:18:07Z2017-10-23T16:18:07Z2017-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf2057-1577https://doi.org/10.1093/ve/vex005http://www.locus.ufv.br/handle/123456789/12282eng3(1): vex005, January 2017Lima, Alison T. M.Silva, Jose ́ C. F.Silva, Fábio N.Castillo-Urquiza, Gloria P.Silva, Fabyano F.Seah, Yee M.Mizubuti, Eduardo S. G.Duffy, SiobainZerbini, Muriloinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T08:06:23Zoai:locus.ufv.br:123456789/12282Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T08:06:23LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
title |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
spellingShingle |
The diversification of begomovirus populations is predominantly driven by mutational dynamics Lima, Alison T. M. Evolution Geminivirus Genetic variability Phylogeny |
title_short |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
title_full |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
title_fullStr |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
title_full_unstemmed |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
title_sort |
The diversification of begomovirus populations is predominantly driven by mutational dynamics |
author |
Lima, Alison T. M. |
author_facet |
Lima, Alison T. M. Silva, Jose ́ C. F. Silva, Fábio N. Castillo-Urquiza, Gloria P. Silva, Fabyano F. Seah, Yee M. Mizubuti, Eduardo S. G. Duffy, Siobain Zerbini, Murilo |
author_role |
author |
author2 |
Silva, Jose ́ C. F. Silva, Fábio N. Castillo-Urquiza, Gloria P. Silva, Fabyano F. Seah, Yee M. Mizubuti, Eduardo S. G. Duffy, Siobain Zerbini, Murilo |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Lima, Alison T. M. Silva, Jose ́ C. F. Silva, Fábio N. Castillo-Urquiza, Gloria P. Silva, Fabyano F. Seah, Yee M. Mizubuti, Eduardo S. G. Duffy, Siobain Zerbini, Murilo |
dc.subject.por.fl_str_mv |
Evolution Geminivirus Genetic variability Phylogeny |
topic |
Evolution Geminivirus Genetic variability Phylogeny |
description |
Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-23T16:18:07Z 2017-10-23T16:18:07Z 2017-03-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2057-1577 https://doi.org/10.1093/ve/vex005 http://www.locus.ufv.br/handle/123456789/12282 |
identifier_str_mv |
2057-1577 |
url |
https://doi.org/10.1093/ve/vex005 http://www.locus.ufv.br/handle/123456789/12282 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
3(1): vex005, January 2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
pdf application/pdf |
dc.publisher.none.fl_str_mv |
Virus Evolution |
publisher.none.fl_str_mv |
Virus Evolution |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1822610690303590400 |