Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1111/gcb.12937 http://www.locus.ufv.br/handle/123456789/19396 |
Resumo: | Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon‐based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above‐ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red‐listed species. We found that increasing fragment size has a positive relationship with above‐ground carbon stock and with abundance of IUCN Red‐listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red‐listed species abundance. These resulted in positive congruence between carbon stocks and Red‐listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer‐grained assessments in fragmented landscapes rather than using averaged coarse‐grained cells. |
id |
UFV_82b2e50fca8b1c2db947cfa867805bac |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/19396 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Magnago, Luiz Fernando S.Martins, Sebastião V.Magrach, AinhoaLaurance, William F.Meira‐Neto, João Augusto A.Simonelli, MarceloEdwards, David P.2018-05-09T10:55:33Z2018-05-09T10:55:33Z2015-03-181365-2486http://dx.doi.org/10.1111/gcb.12937http://www.locus.ufv.br/handle/123456789/19396Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon‐based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above‐ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red‐listed species. We found that increasing fragment size has a positive relationship with above‐ground carbon stock and with abundance of IUCN Red‐listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red‐listed species abundance. These resulted in positive congruence between carbon stocks and Red‐listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer‐grained assessments in fragmented landscapes rather than using averaged coarse‐grained cells.engGlobal Change BiologyVolume21, Issue9, Pages 3455-3468, September 2015Biodiversity valueBiomassEcosystems servicesForest managementFragment isolationREDD+SafeguardsThrea- tened speciesWould protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf529020https://locus.ufv.br//bitstream/123456789/19396/1/artigo.pdffaabf3543de87c8322d742baeaa31725MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19396/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5799https://locus.ufv.br//bitstream/123456789/19396/3/artigo.pdf.jpg03b399897ab3bd1cefa38c51e49d539eMD53123456789/193962018-05-09 23:00:32.582oai:locus.ufv.br:123456789/19396Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-05-10T02:00:32LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
title |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
spellingShingle |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Magnago, Luiz Fernando S. Biodiversity value Biomass Ecosystems services Forest management Fragment isolation REDD+ Safeguards Threa- tened species |
title_short |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
title_full |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
title_fullStr |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
title_full_unstemmed |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
title_sort |
Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? |
author |
Magnago, Luiz Fernando S. |
author_facet |
Magnago, Luiz Fernando S. Martins, Sebastião V. Magrach, Ainhoa Laurance, William F. Meira‐Neto, João Augusto A. Simonelli, Marcelo Edwards, David P. |
author_role |
author |
author2 |
Martins, Sebastião V. Magrach, Ainhoa Laurance, William F. Meira‐Neto, João Augusto A. Simonelli, Marcelo Edwards, David P. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Magnago, Luiz Fernando S. Martins, Sebastião V. Magrach, Ainhoa Laurance, William F. Meira‐Neto, João Augusto A. Simonelli, Marcelo Edwards, David P. |
dc.subject.pt-BR.fl_str_mv |
Biodiversity value Biomass Ecosystems services Forest management Fragment isolation REDD+ Safeguards Threa- tened species |
topic |
Biodiversity value Biomass Ecosystems services Forest management Fragment isolation REDD+ Safeguards Threa- tened species |
description |
Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon‐based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above‐ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red‐listed species. We found that increasing fragment size has a positive relationship with above‐ground carbon stock and with abundance of IUCN Red‐listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red‐listed species abundance. These resulted in positive congruence between carbon stocks and Red‐listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer‐grained assessments in fragmented landscapes rather than using averaged coarse‐grained cells. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-03-18 |
dc.date.accessioned.fl_str_mv |
2018-05-09T10:55:33Z |
dc.date.available.fl_str_mv |
2018-05-09T10:55:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1111/gcb.12937 http://www.locus.ufv.br/handle/123456789/19396 |
dc.identifier.issn.none.fl_str_mv |
1365-2486 |
identifier_str_mv |
1365-2486 |
url |
http://dx.doi.org/10.1111/gcb.12937 http://www.locus.ufv.br/handle/123456789/19396 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume21, Issue9, Pages 3455-3468, September 2015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Global Change Biology |
publisher.none.fl_str_mv |
Global Change Biology |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/19396/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/19396/2/license.txt https://locus.ufv.br//bitstream/123456789/19396/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
faabf3543de87c8322d742baeaa31725 8a4605be74aa9ea9d79846c1fba20a33 03b399897ab3bd1cefa38c51e49d539e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212850614566912 |