Avaliação da heterogeneidade de variâncias utilizando dados simulados

Detalhes bibliográficos
Autor(a) principal: Carneiro Júnior, José Marques
Data de Publicação: 2005
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://www.locus.ufv.br/handle/123456789/10527
Resumo: Estudos de simulação foram conduzidos com o objetivo de realizar uma análise comparativa, via simulação de dados, entre a metodologia clássica de estimação dos componentes de variância e predição dos valores genéticos REML – BLUP e a metodologia Bayesiana que permite a inclusão de informação a priori e a utilização de distribuições robustas, como a normal contaminada, na avaliação genética dos animais. Foi simulado um genoma de 3000 centimorgans de comprimento, considerando uma única característica quantitativa, governada por 800 locos com dois alelos por loco, na qual a herdabilidade variou conforme a estrutura desejada de heterogeneidade de variâncias. Segundo a estrutura genômica proposta, foram simulados 1500 machos e 1500 fêmeas que formaram a população base. A partir da população-base foram formadas duas populações iniciais, uma grande e outra pequena. Com o propósito de avaliar o efeito dos diferentes tipos de heterogeneidade de variâncias, em populações com dois tamanhos, bem como comparar o método REML – BLUP com o método Bayesiano, foram inseridos diferentes tipos de estruturas de heterogeneidade nas populações iniciais. Para obtenção destas estruturas de heterogeneidade foram feitos descartes estratégicos dos valores genéticos, ambientais, ou de ambos, de acordo com o tipo de heterogeneidade e o nível de variabilidade desejada: alta, média ou baixa. Para a metodologia Bayesiana foram utilizados três níveis de informação a priori: não informativo, pouco informativo e informativo. Para a estrutura com heterogeneidade ambiental foi empregado também o método Bayesiano, considerando distribuição normal contaminada para os resíduos. De forma geral foi verificado que a presença da heterogeneidade causa problemas para seleção dos melhores indivíduos, principalmente se a heterogeneidade estiver presente no componente ambiental. Os métodos comparados apresentaram resultados semelhantes quando priors não informativos foram utilizados, sendo que as populações de tamanho grande, de modo geral, apresentaram melhores estimativas. Para as populações pequenas as análises realizadas dentro dos subníveis apresentaram maiores problemas, devido ao pequeno tamanho das subpopulações formadas. Foi observado, para a metodologia Bayesiana, que o aumento no nível de informação a priori influenciou positivamente as estimativas dos componentes de variância, principalmente para as populações pequenas. A utilização da distribuição normal contaminada para os resíduos, não foi eficiente em eliminar os problemas causados pela presença da heterogeneidade de variâncias, sendo que para predição dos valores genéticos os resultados foram similares. Apesar do aumento de informação ter conduzido a estimativas mais acuradas de componentes de variância, a correlação de Spearman entre os valores genéticos reais e preditos não foi alterada quando níveis mais informativos foram utilizados. Contudo, foi verificado pelo Quadrado Médio do Erro que a predição dos valores genéticos foi sensivelmente mais acurada, quando o maior nível de informação foi utilizado. Conclui-se, portanto, que melhores predições dos valores genéticos, para populações pequenas, podem ser obtidas pela metodologia Bayesiana quando informações adicionais estão disponíveis.
id UFV_83aa2e811f4e36f95bb0eb36b44b8694
oai_identifier_str oai:locus.ufv.br:123456789/10527
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Lopes, Paulo SávioTorres, Robledo de AlmeidaCarneiro Júnior, José Marqueshttp://lattes.cnpq.br/6146746404290090Euclydes, Ricardo Frederico2017-06-05T14:01:51Z2017-06-05T14:01:51Z2005-02-14CARNEIRO JÚNIOR, José Marques. Avaliação da heterogeneidade de variâncias utilizando dados simulados. 2005. 88 f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2005.http://www.locus.ufv.br/handle/123456789/10527Estudos de simulação foram conduzidos com o objetivo de realizar uma análise comparativa, via simulação de dados, entre a metodologia clássica de estimação dos componentes de variância e predição dos valores genéticos REML – BLUP e a metodologia Bayesiana que permite a inclusão de informação a priori e a utilização de distribuições robustas, como a normal contaminada, na avaliação genética dos animais. Foi simulado um genoma de 3000 centimorgans de comprimento, considerando uma única característica quantitativa, governada por 800 locos com dois alelos por loco, na qual a herdabilidade variou conforme a estrutura desejada de heterogeneidade de variâncias. Segundo a estrutura genômica proposta, foram simulados 1500 machos e 1500 fêmeas que formaram a população base. A partir da população-base foram formadas duas populações iniciais, uma grande e outra pequena. Com o propósito de avaliar o efeito dos diferentes tipos de heterogeneidade de variâncias, em populações com dois tamanhos, bem como comparar o método REML – BLUP com o método Bayesiano, foram inseridos diferentes tipos de estruturas de heterogeneidade nas populações iniciais. Para obtenção destas estruturas de heterogeneidade foram feitos descartes estratégicos dos valores genéticos, ambientais, ou de ambos, de acordo com o tipo de heterogeneidade e o nível de variabilidade desejada: alta, média ou baixa. Para a metodologia Bayesiana foram utilizados três níveis de informação a priori: não informativo, pouco informativo e informativo. Para a estrutura com heterogeneidade ambiental foi empregado também o método Bayesiano, considerando distribuição normal contaminada para os resíduos. De forma geral foi verificado que a presença da heterogeneidade causa problemas para seleção dos melhores indivíduos, principalmente se a heterogeneidade estiver presente no componente ambiental. Os métodos comparados apresentaram resultados semelhantes quando priors não informativos foram utilizados, sendo que as populações de tamanho grande, de modo geral, apresentaram melhores estimativas. Para as populações pequenas as análises realizadas dentro dos subníveis apresentaram maiores problemas, devido ao pequeno tamanho das subpopulações formadas. Foi observado, para a metodologia Bayesiana, que o aumento no nível de informação a priori influenciou positivamente as estimativas dos componentes de variância, principalmente para as populações pequenas. A utilização da distribuição normal contaminada para os resíduos, não foi eficiente em eliminar os problemas causados pela presença da heterogeneidade de variâncias, sendo que para predição dos valores genéticos os resultados foram similares. Apesar do aumento de informação ter conduzido a estimativas mais acuradas de componentes de variância, a correlação de Spearman entre os valores genéticos reais e preditos não foi alterada quando níveis mais informativos foram utilizados. Contudo, foi verificado pelo Quadrado Médio do Erro que a predição dos valores genéticos foi sensivelmente mais acurada, quando o maior nível de informação foi utilizado. Conclui-se, portanto, que melhores predições dos valores genéticos, para populações pequenas, podem ser obtidas pela metodologia Bayesiana quando informações adicionais estão disponíveis.Studies on simulation were carried out aiming to achieve a comparative analysis, through data simulation, between the classic methodology REML - BLUP of the variance components estimation and genetic values prediction and the Bayesian methodology, that allows the inclusion of a priori information and the use of robust distributions, as the contaminated normal distribution, in the animal genetic evaluation. A genome of 3,000 length centimorgans was simulated, considering a single quantitative trait, governed by 800 loci with two alleles by locus, in which heritability varied accordingly with the heterogeneity variance structures desired. According to the genomic structure proposed, there were simulated 1,500 males and 1,500 females that formed the base population. Starting from the base population, two initial populations were formed: a large and a small one. With the purpose of evaluating different type of heterogeneity variance effects, in populations with two sizes, as well as to compare the method REML - BLUP with the Bayesian method, different types of heterogeneity structures were inserted in the initial populations. For obtaining these heterogeneity structures there were made strategic discards of genetic values, environmental, or both, in agreement with the heterogeneity type and the level of desired variability: high, medium or small. For Bayesian methodology, three a priori information levels were used: no informative, slightly informative and informative. For structure with environmental heterogeneity, it was also used the Bayesian method considering contaminated normal distribution for the residuals. In a general way, it was verified that the presence of the heterogeneity causes problems for the best individuals' selection, mainly if the heterogeneity occurs in the environmental component. The compared xmethods presented similar results when no informative priors were used, and large size populations presented, in general, better estimates. For small populations, the analyses accomplished inside of the subclass presented larger problems, due to small size of the formed subclass. It was observed, for the Bayesian methodology, that the increase the a priori information level influenced the estimates of variance components positively, mainly for the small populations. Using contaminated normal distribution for the residues, was not efficient in eliminating the problems caused by variances heterogeneity, and for genetic values prediction the results were similar. In spite of the increase of information to have led to accurate estimates of the variance components, the Spearman Correlation among the true genetic values and predicted was not altered when more informative levels were used. However, it was verified by the Mean Square Error that prediction genetic values was sensibly more accurate, when more information level was used. It is ended, therefore, that better predictions of the genetic values, for small populations, they can be obtained by the Bayesian methodology when additional information are available.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaMelhoramento animal - Métodos de simulaçãoAnálise de variânciaMarcadores genéticosTeoria bayesiana de decisão estatísticaGenéticaCiências AgráriasAvaliação da heterogeneidade de variâncias utilizando dados simuladosEvaluation of variance heterogeneity using simulate datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal de ViçosaDepartamento de FitotecniaDoutor em Genética e MelhoramentoViçosa - MG2005-02-14Doutoradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf301291https://locus.ufv.br//bitstream/123456789/10527/1/texto%20completo.pdf8e2de4fade72f03e9455d5b2d6b32308MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/10527/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3651https://locus.ufv.br//bitstream/123456789/10527/3/texto%20completo.pdf.jpgcc18223d69e775fe35acdda4e0dacca4MD53123456789/105272017-06-05 23:00:24.669oai:locus.ufv.br:123456789/10527Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-06-06T02:00:24LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Avaliação da heterogeneidade de variâncias utilizando dados simulados
dc.title.en.fl_str_mv Evaluation of variance heterogeneity using simulate data
title Avaliação da heterogeneidade de variâncias utilizando dados simulados
spellingShingle Avaliação da heterogeneidade de variâncias utilizando dados simulados
Carneiro Júnior, José Marques
Melhoramento animal - Métodos de simulação
Análise de variância
Marcadores genéticos
Teoria bayesiana de decisão estatística
Genética
Ciências Agrárias
title_short Avaliação da heterogeneidade de variâncias utilizando dados simulados
title_full Avaliação da heterogeneidade de variâncias utilizando dados simulados
title_fullStr Avaliação da heterogeneidade de variâncias utilizando dados simulados
title_full_unstemmed Avaliação da heterogeneidade de variâncias utilizando dados simulados
title_sort Avaliação da heterogeneidade de variâncias utilizando dados simulados
author Carneiro Júnior, José Marques
author_facet Carneiro Júnior, José Marques
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/6146746404290090
dc.contributor.none.fl_str_mv Lopes, Paulo Sávio
Torres, Robledo de Almeida
dc.contributor.author.fl_str_mv Carneiro Júnior, José Marques
dc.contributor.advisor1.fl_str_mv Euclydes, Ricardo Frederico
contributor_str_mv Euclydes, Ricardo Frederico
dc.subject.pt-BR.fl_str_mv Melhoramento animal - Métodos de simulação
Análise de variância
Marcadores genéticos
Teoria bayesiana de decisão estatística
Genética
topic Melhoramento animal - Métodos de simulação
Análise de variância
Marcadores genéticos
Teoria bayesiana de decisão estatística
Genética
Ciências Agrárias
dc.subject.cnpq.fl_str_mv Ciências Agrárias
description Estudos de simulação foram conduzidos com o objetivo de realizar uma análise comparativa, via simulação de dados, entre a metodologia clássica de estimação dos componentes de variância e predição dos valores genéticos REML – BLUP e a metodologia Bayesiana que permite a inclusão de informação a priori e a utilização de distribuições robustas, como a normal contaminada, na avaliação genética dos animais. Foi simulado um genoma de 3000 centimorgans de comprimento, considerando uma única característica quantitativa, governada por 800 locos com dois alelos por loco, na qual a herdabilidade variou conforme a estrutura desejada de heterogeneidade de variâncias. Segundo a estrutura genômica proposta, foram simulados 1500 machos e 1500 fêmeas que formaram a população base. A partir da população-base foram formadas duas populações iniciais, uma grande e outra pequena. Com o propósito de avaliar o efeito dos diferentes tipos de heterogeneidade de variâncias, em populações com dois tamanhos, bem como comparar o método REML – BLUP com o método Bayesiano, foram inseridos diferentes tipos de estruturas de heterogeneidade nas populações iniciais. Para obtenção destas estruturas de heterogeneidade foram feitos descartes estratégicos dos valores genéticos, ambientais, ou de ambos, de acordo com o tipo de heterogeneidade e o nível de variabilidade desejada: alta, média ou baixa. Para a metodologia Bayesiana foram utilizados três níveis de informação a priori: não informativo, pouco informativo e informativo. Para a estrutura com heterogeneidade ambiental foi empregado também o método Bayesiano, considerando distribuição normal contaminada para os resíduos. De forma geral foi verificado que a presença da heterogeneidade causa problemas para seleção dos melhores indivíduos, principalmente se a heterogeneidade estiver presente no componente ambiental. Os métodos comparados apresentaram resultados semelhantes quando priors não informativos foram utilizados, sendo que as populações de tamanho grande, de modo geral, apresentaram melhores estimativas. Para as populações pequenas as análises realizadas dentro dos subníveis apresentaram maiores problemas, devido ao pequeno tamanho das subpopulações formadas. Foi observado, para a metodologia Bayesiana, que o aumento no nível de informação a priori influenciou positivamente as estimativas dos componentes de variância, principalmente para as populações pequenas. A utilização da distribuição normal contaminada para os resíduos, não foi eficiente em eliminar os problemas causados pela presença da heterogeneidade de variâncias, sendo que para predição dos valores genéticos os resultados foram similares. Apesar do aumento de informação ter conduzido a estimativas mais acuradas de componentes de variância, a correlação de Spearman entre os valores genéticos reais e preditos não foi alterada quando níveis mais informativos foram utilizados. Contudo, foi verificado pelo Quadrado Médio do Erro que a predição dos valores genéticos foi sensivelmente mais acurada, quando o maior nível de informação foi utilizado. Conclui-se, portanto, que melhores predições dos valores genéticos, para populações pequenas, podem ser obtidas pela metodologia Bayesiana quando informações adicionais estão disponíveis.
publishDate 2005
dc.date.issued.fl_str_mv 2005-02-14
dc.date.accessioned.fl_str_mv 2017-06-05T14:01:51Z
dc.date.available.fl_str_mv 2017-06-05T14:01:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARNEIRO JÚNIOR, José Marques. Avaliação da heterogeneidade de variâncias utilizando dados simulados. 2005. 88 f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2005.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/10527
identifier_str_mv CARNEIRO JÚNIOR, José Marques. Avaliação da heterogeneidade de variâncias utilizando dados simulados. 2005. 88 f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2005.
url http://www.locus.ufv.br/handle/123456789/10527
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/10527/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/10527/2/license.txt
https://locus.ufv.br//bitstream/123456789/10527/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 8e2de4fade72f03e9455d5b2d6b32308
8a4605be74aa9ea9d79846c1fba20a33
cc18223d69e775fe35acdda4e0dacca4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213061018681344