Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks

Detalhes bibliográficos
Autor(a) principal: Cota, Wesley
Data de Publicação: 2017
Outros Autores: Ferreira, Silvio C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.cpc.2017.06.007
http://www.locus.ufv.br/handle/123456789/21634
Resumo: Numerical simulation of continuous-time Markovian processes is an essential and widely applied tool in the investigation of epidemic spreading on complex networks. Due to the high heterogeneity of the connectivity structure through which epidemic is transmitted, efficient and accurate implementations of generic epidemic processes are not trivial and deviations from statistically exact prescriptions can lead to uncontrolled biases. Based on the Gillespie algorithm (GA), in which only steps that change the state are considered, we develop numerical recipes and describe their computer implementations for statistically exact and computationally efficient simulations of generic Markovian epidemic processes aiming at highly heterogeneous and large networks. The central point of the recipes investigated here is to include phantom processes, that do not change the states but do count for time increments. We compare the efficiencies for the susceptible–infected–susceptible, contact process and susceptible–infected–recovered models, that are particular cases of a generic model considered here. We numerically confirm that the simulation outcomes of the optimized algorithms are statistically indistinguishable from the original GA and can be several orders of magnitude more efficient.
id UFV_86e9b5eb79a69547dcbfda6b447e0897
oai_identifier_str oai:locus.ufv.br:123456789/21634
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Cota, WesleyFerreira, Silvio C.2018-09-04T17:11:38Z2018-09-04T17:11:38Z2017-1000104655https://doi.org/10.1016/j.cpc.2017.06.007http://www.locus.ufv.br/handle/123456789/21634Numerical simulation of continuous-time Markovian processes is an essential and widely applied tool in the investigation of epidemic spreading on complex networks. Due to the high heterogeneity of the connectivity structure through which epidemic is transmitted, efficient and accurate implementations of generic epidemic processes are not trivial and deviations from statistically exact prescriptions can lead to uncontrolled biases. Based on the Gillespie algorithm (GA), in which only steps that change the state are considered, we develop numerical recipes and describe their computer implementations for statistically exact and computationally efficient simulations of generic Markovian epidemic processes aiming at highly heterogeneous and large networks. The central point of the recipes investigated here is to include phantom processes, that do not change the states but do count for time increments. We compare the efficiencies for the susceptible–infected–susceptible, contact process and susceptible–infected–recovered models, that are particular cases of a generic model considered here. We numerically confirm that the simulation outcomes of the optimized algorithms are statistically indistinguishable from the original GA and can be several orders of magnitude more efficient.engComputer Physics Communicationsv. 219, p. 303- 312, october 2017Elsevier B.V.info:eu-repo/semantics/openAccessComplex networksMarkovian epidemic processesGillespie algorithmOptimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf661145https://locus.ufv.br//bitstream/123456789/21634/1/artigo.pdf1a32c3e09f252820d50ec36132acfdd2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21634/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5350https://locus.ufv.br//bitstream/123456789/21634/3/artigo.pdf.jpgeff20a8cf7d61320a471f2b50f110646MD53123456789/216342018-09-04 23:00:53.534oai:locus.ufv.br:123456789/21634Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-05T02:00:53LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
title Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
spellingShingle Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
Cota, Wesley
Complex networks
Markovian epidemic processes
Gillespie algorithm
title_short Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
title_full Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
title_fullStr Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
title_full_unstemmed Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
title_sort Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
author Cota, Wesley
author_facet Cota, Wesley
Ferreira, Silvio C.
author_role author
author2 Ferreira, Silvio C.
author2_role author
dc.contributor.author.fl_str_mv Cota, Wesley
Ferreira, Silvio C.
dc.subject.pt-BR.fl_str_mv Complex networks
Markovian epidemic processes
Gillespie algorithm
topic Complex networks
Markovian epidemic processes
Gillespie algorithm
description Numerical simulation of continuous-time Markovian processes is an essential and widely applied tool in the investigation of epidemic spreading on complex networks. Due to the high heterogeneity of the connectivity structure through which epidemic is transmitted, efficient and accurate implementations of generic epidemic processes are not trivial and deviations from statistically exact prescriptions can lead to uncontrolled biases. Based on the Gillespie algorithm (GA), in which only steps that change the state are considered, we develop numerical recipes and describe their computer implementations for statistically exact and computationally efficient simulations of generic Markovian epidemic processes aiming at highly heterogeneous and large networks. The central point of the recipes investigated here is to include phantom processes, that do not change the states but do count for time increments. We compare the efficiencies for the susceptible–infected–susceptible, contact process and susceptible–infected–recovered models, that are particular cases of a generic model considered here. We numerically confirm that the simulation outcomes of the optimized algorithms are statistically indistinguishable from the original GA and can be several orders of magnitude more efficient.
publishDate 2017
dc.date.issued.fl_str_mv 2017-10
dc.date.accessioned.fl_str_mv 2018-09-04T17:11:38Z
dc.date.available.fl_str_mv 2018-09-04T17:11:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.cpc.2017.06.007
http://www.locus.ufv.br/handle/123456789/21634
dc.identifier.issn.none.fl_str_mv 00104655
identifier_str_mv 00104655
url https://doi.org/10.1016/j.cpc.2017.06.007
http://www.locus.ufv.br/handle/123456789/21634
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 219, p. 303- 312, october 2017
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Computer Physics Communications
publisher.none.fl_str_mv Computer Physics Communications
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21634/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21634/2/license.txt
https://locus.ufv.br//bitstream/123456789/21634/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 1a32c3e09f252820d50ec36132acfdd2
8a4605be74aa9ea9d79846c1fba20a33
eff20a8cf7d61320a471f2b50f110646
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212942817951744