Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.cpc.2017.06.007 http://www.locus.ufv.br/handle/123456789/21634 |
Resumo: | Numerical simulation of continuous-time Markovian processes is an essential and widely applied tool in the investigation of epidemic spreading on complex networks. Due to the high heterogeneity of the connectivity structure through which epidemic is transmitted, efficient and accurate implementations of generic epidemic processes are not trivial and deviations from statistically exact prescriptions can lead to uncontrolled biases. Based on the Gillespie algorithm (GA), in which only steps that change the state are considered, we develop numerical recipes and describe their computer implementations for statistically exact and computationally efficient simulations of generic Markovian epidemic processes aiming at highly heterogeneous and large networks. The central point of the recipes investigated here is to include phantom processes, that do not change the states but do count for time increments. We compare the efficiencies for the susceptible–infected–susceptible, contact process and susceptible–infected–recovered models, that are particular cases of a generic model considered here. We numerically confirm that the simulation outcomes of the optimized algorithms are statistically indistinguishable from the original GA and can be several orders of magnitude more efficient. |
id |
UFV_86e9b5eb79a69547dcbfda6b447e0897 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/21634 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Cota, WesleyFerreira, Silvio C.2018-09-04T17:11:38Z2018-09-04T17:11:38Z2017-1000104655https://doi.org/10.1016/j.cpc.2017.06.007http://www.locus.ufv.br/handle/123456789/21634Numerical simulation of continuous-time Markovian processes is an essential and widely applied tool in the investigation of epidemic spreading on complex networks. Due to the high heterogeneity of the connectivity structure through which epidemic is transmitted, efficient and accurate implementations of generic epidemic processes are not trivial and deviations from statistically exact prescriptions can lead to uncontrolled biases. Based on the Gillespie algorithm (GA), in which only steps that change the state are considered, we develop numerical recipes and describe their computer implementations for statistically exact and computationally efficient simulations of generic Markovian epidemic processes aiming at highly heterogeneous and large networks. The central point of the recipes investigated here is to include phantom processes, that do not change the states but do count for time increments. We compare the efficiencies for the susceptible–infected–susceptible, contact process and susceptible–infected–recovered models, that are particular cases of a generic model considered here. We numerically confirm that the simulation outcomes of the optimized algorithms are statistically indistinguishable from the original GA and can be several orders of magnitude more efficient.engComputer Physics Communicationsv. 219, p. 303- 312, october 2017Elsevier B.V.info:eu-repo/semantics/openAccessComplex networksMarkovian epidemic processesGillespie algorithmOptimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf661145https://locus.ufv.br//bitstream/123456789/21634/1/artigo.pdf1a32c3e09f252820d50ec36132acfdd2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21634/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5350https://locus.ufv.br//bitstream/123456789/21634/3/artigo.pdf.jpgeff20a8cf7d61320a471f2b50f110646MD53123456789/216342018-09-04 23:00:53.534oai:locus.ufv.br:123456789/21634Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-05T02:00:53LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
title |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
spellingShingle |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks Cota, Wesley Complex networks Markovian epidemic processes Gillespie algorithm |
title_short |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
title_full |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
title_fullStr |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
title_full_unstemmed |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
title_sort |
Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks |
author |
Cota, Wesley |
author_facet |
Cota, Wesley Ferreira, Silvio C. |
author_role |
author |
author2 |
Ferreira, Silvio C. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cota, Wesley Ferreira, Silvio C. |
dc.subject.pt-BR.fl_str_mv |
Complex networks Markovian epidemic processes Gillespie algorithm |
topic |
Complex networks Markovian epidemic processes Gillespie algorithm |
description |
Numerical simulation of continuous-time Markovian processes is an essential and widely applied tool in the investigation of epidemic spreading on complex networks. Due to the high heterogeneity of the connectivity structure through which epidemic is transmitted, efficient and accurate implementations of generic epidemic processes are not trivial and deviations from statistically exact prescriptions can lead to uncontrolled biases. Based on the Gillespie algorithm (GA), in which only steps that change the state are considered, we develop numerical recipes and describe their computer implementations for statistically exact and computationally efficient simulations of generic Markovian epidemic processes aiming at highly heterogeneous and large networks. The central point of the recipes investigated here is to include phantom processes, that do not change the states but do count for time increments. We compare the efficiencies for the susceptible–infected–susceptible, contact process and susceptible–infected–recovered models, that are particular cases of a generic model considered here. We numerically confirm that the simulation outcomes of the optimized algorithms are statistically indistinguishable from the original GA and can be several orders of magnitude more efficient. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-10 |
dc.date.accessioned.fl_str_mv |
2018-09-04T17:11:38Z |
dc.date.available.fl_str_mv |
2018-09-04T17:11:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.cpc.2017.06.007 http://www.locus.ufv.br/handle/123456789/21634 |
dc.identifier.issn.none.fl_str_mv |
00104655 |
identifier_str_mv |
00104655 |
url |
https://doi.org/10.1016/j.cpc.2017.06.007 http://www.locus.ufv.br/handle/123456789/21634 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 219, p. 303- 312, october 2017 |
dc.rights.driver.fl_str_mv |
Elsevier B.V. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier B.V. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Computer Physics Communications |
publisher.none.fl_str_mv |
Computer Physics Communications |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/21634/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/21634/2/license.txt https://locus.ufv.br//bitstream/123456789/21634/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
1a32c3e09f252820d50ec36132acfdd2 8a4605be74aa9ea9d79846c1fba20a33 eff20a8cf7d61320a471f2b50f110646 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212942817951744 |