Non-Markovian epidemic processes in complex networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12012024-114250/ |
Resumo: | One of the cornerstones of mathematical epidemic modeling consists in assuming that infection and recovery can be described by Markov processes. This assumption implies that the inter-event times follow a negative exponential distribution. However, real-world epidemics are influenced by complex factors like human behavior and non-exponential incubation periods. As a result, there has been a growing interest in exploring non-Markovian epidemic processes. in the last decade. This work has the goal of exploring different problems concerning non-Markovian epidemics in complex networks. In particular, numerical simulations were conducted to study SIR and SIS non-Markovian epidemics using Weibull infection processes on different network models: (i) regular random networks (Erdos and Renyi model), (ii) scale-free networks (Barabási Albert model), and (iii) small-world networks (Watts Strogatz model). Our results reveal that considering a non-Markovian infection can significantly alter the epidemic size and threshold values. Increasing the shape parameter a, associated with aging in the probability of infection, leads to smaller epidemic sizes and higher critical effective rates. Our investigation also extends to the study of SIR non-Markovian processes in modular networks. For a Weibull infection process, we verify that strong community structures and positive aging contribute to larger epidemic sizes. Furthermore, the results suggest that as long as the critical transition rate remains below the effective rate chosen, positive aging processes can hence the role of communities in hindering the disease propagation to the entire network. This is caused by the slower propagation associated with the positive aging process, which prevents the disease from reaching healthy communities. |
id |
USP_bcc9b1de550952a7e8717880373458e4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12012024-114250 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Non-Markovian epidemic processes in complex networksProcessos epidêmicos não-Markovianos em redes complexasComplex networksEpidemic modelsEpidemic simulationsModelos epidêmicosModular networksNon-Markovian processesPorcessos não-MarkovianosRedes complexasRedes modularesSimulações de epidemiasOne of the cornerstones of mathematical epidemic modeling consists in assuming that infection and recovery can be described by Markov processes. This assumption implies that the inter-event times follow a negative exponential distribution. However, real-world epidemics are influenced by complex factors like human behavior and non-exponential incubation periods. As a result, there has been a growing interest in exploring non-Markovian epidemic processes. in the last decade. This work has the goal of exploring different problems concerning non-Markovian epidemics in complex networks. In particular, numerical simulations were conducted to study SIR and SIS non-Markovian epidemics using Weibull infection processes on different network models: (i) regular random networks (Erdos and Renyi model), (ii) scale-free networks (Barabási Albert model), and (iii) small-world networks (Watts Strogatz model). Our results reveal that considering a non-Markovian infection can significantly alter the epidemic size and threshold values. Increasing the shape parameter a, associated with aging in the probability of infection, leads to smaller epidemic sizes and higher critical effective rates. Our investigation also extends to the study of SIR non-Markovian processes in modular networks. For a Weibull infection process, we verify that strong community structures and positive aging contribute to larger epidemic sizes. Furthermore, the results suggest that as long as the critical transition rate remains below the effective rate chosen, positive aging processes can hence the role of communities in hindering the disease propagation to the entire network. This is caused by the slower propagation associated with the positive aging process, which prevents the disease from reaching healthy communities.Um dos pilares mais importantes na modelagem matemática de processos epidêmicos é considerar os processos de infecção e recuperação como Markovianos. Isto significa que, os tempos em que um indivíduo infectado irá contagiar os seus vizinhos e, o tempo em que irá recuperar-se são exponencialmente distribuídos. No entanto, a propagação de doenças depende diretamente do comportamento humano e de períodos de incubação de doença, que em geral são fenômenos descritos por distribuições não-exponenciais. Na presente pesquisa, objetivamos explorar diferentes problemas relacionados a processos epidêmicos não-Markovianos em redes complexas. Especificamente, realizamos simulações numéricas para estudar o modelo SIR e SIS não-Markovianos com um processo de infecção Weibull em diferentes tipos de redes: (i) redes regulares aleatória descritas pelo modelo Erdós e Renyi, (ii) redes sem escala feita com o modelo Barabási Albert e (iii) redes com caraterística de pequeno mundo descritas pelo modelo Watts Strogatz. Foi mostrado que considerar um processo de infecção não-Markoviano pode mudar significativamente o tamanho da epidemia e o valor da taxa crítica de transmissão. Quanto maior o parâmetro de forma a, associado ao envelhecimento da probabilidade de infecção, epidemias com menor tamanhos e maiores taxas críticas de transmissão são encontradas. Também, estudamos processo SIR não-Markovianos em redes modulares. Para um processo de infecçãoWeibull foi encontrado que estruturas de comunidades mais fortes e envelhecimentos positivos tendem a gerar epidemias com maiores tamanho. Além disso, nossos resultados sugerem que enquanto a taxa crítica de transmissão estiver abaixo da taxa efetiva de transmissão, envelhecimentos positivos podem enfatizar o efeito de estruturas de comunidades. Isto se deve ao fato de que o envelhecimento gera uma transmissão mais lenta, o que permite que as comunidades sejam mais efetivas em conter a doença, evitando a contaminação de comunidades saudáveis.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Francisco AparecidoMorán, José Andrés Guzmán2023-09-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-12012024-114250/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-01-12T14:10:02Zoai:teses.usp.br:tde-12012024-114250Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-12T14:10:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Non-Markovian epidemic processes in complex networks Processos epidêmicos não-Markovianos em redes complexas |
title |
Non-Markovian epidemic processes in complex networks |
spellingShingle |
Non-Markovian epidemic processes in complex networks Morán, José Andrés Guzmán Complex networks Epidemic models Epidemic simulations Modelos epidêmicos Modular networks Non-Markovian processes Porcessos não-Markovianos Redes complexas Redes modulares Simulações de epidemias |
title_short |
Non-Markovian epidemic processes in complex networks |
title_full |
Non-Markovian epidemic processes in complex networks |
title_fullStr |
Non-Markovian epidemic processes in complex networks |
title_full_unstemmed |
Non-Markovian epidemic processes in complex networks |
title_sort |
Non-Markovian epidemic processes in complex networks |
author |
Morán, José Andrés Guzmán |
author_facet |
Morán, José Andrés Guzmán |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Francisco Aparecido |
dc.contributor.author.fl_str_mv |
Morán, José Andrés Guzmán |
dc.subject.por.fl_str_mv |
Complex networks Epidemic models Epidemic simulations Modelos epidêmicos Modular networks Non-Markovian processes Porcessos não-Markovianos Redes complexas Redes modulares Simulações de epidemias |
topic |
Complex networks Epidemic models Epidemic simulations Modelos epidêmicos Modular networks Non-Markovian processes Porcessos não-Markovianos Redes complexas Redes modulares Simulações de epidemias |
description |
One of the cornerstones of mathematical epidemic modeling consists in assuming that infection and recovery can be described by Markov processes. This assumption implies that the inter-event times follow a negative exponential distribution. However, real-world epidemics are influenced by complex factors like human behavior and non-exponential incubation periods. As a result, there has been a growing interest in exploring non-Markovian epidemic processes. in the last decade. This work has the goal of exploring different problems concerning non-Markovian epidemics in complex networks. In particular, numerical simulations were conducted to study SIR and SIS non-Markovian epidemics using Weibull infection processes on different network models: (i) regular random networks (Erdos and Renyi model), (ii) scale-free networks (Barabási Albert model), and (iii) small-world networks (Watts Strogatz model). Our results reveal that considering a non-Markovian infection can significantly alter the epidemic size and threshold values. Increasing the shape parameter a, associated with aging in the probability of infection, leads to smaller epidemic sizes and higher critical effective rates. Our investigation also extends to the study of SIR non-Markovian processes in modular networks. For a Weibull infection process, we verify that strong community structures and positive aging contribute to larger epidemic sizes. Furthermore, the results suggest that as long as the critical transition rate remains below the effective rate chosen, positive aging processes can hence the role of communities in hindering the disease propagation to the entire network. This is caused by the slower propagation associated with the positive aging process, which prevents the disease from reaching healthy communities. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12012024-114250/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12012024-114250/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256885680406528 |