The ϕ-Dimension: A new homological measure
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1007/s10468-014-9504-9 http://www.locus.ufv.br/handle/123456789/23550 |
Resumo: | In Igusa and Todorov (2005) introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms of the bi-functors ExtiA(−,−)ExtAi(−,−) and in terms of Tor’s bi-functors TorAi(−,−).ToriA(−,−). Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result (Bongartz, Lect. Notes Math. 903, 26–38, (1981), Corollary 1) as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra B = End A (T) o p , we have that ϕ dim (A) − pd T ≤ ϕ dim (B) ≤ ϕ dim (A) + pd T. |
id |
UFV_8dea5df5805b5ed3a1adc7adf851f5ce |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/23550 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Fernandes, Sônia MariaLanzilotta, MarceloHernández, Octavio Mendoza2019-02-18T00:12:27Z2019-02-18T00:12:27Z2015-041572-9079https://doi.org/10.1007/s10468-014-9504-9http://www.locus.ufv.br/handle/123456789/23550In Igusa and Todorov (2005) introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms of the bi-functors ExtiA(−,−)ExtAi(−,−) and in terms of Tor’s bi-functors TorAi(−,−).ToriA(−,−). Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result (Bongartz, Lect. Notes Math. 903, 26–38, (1981), Corollary 1) as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra B = End A (T) o p , we have that ϕ dim (A) − pd T ≤ ϕ dim (B) ≤ ϕ dim (A) + pd T.engAlgebras and Representation TheoryVolume 18, Issue 2, Pages 463–476, April 2015Springer Science+Business Media Dordrechtinfo:eu-repo/semantics/openAccessFinitistic dimensionIgusa-Todorov functionsDerived categoriesThe ϕ-Dimension: A new homological measureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf375166https://locus.ufv.br//bitstream/123456789/23550/1/artigo.pdfc3e5e66ec257b091f3741b39aecf1f21MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23550/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/235502019-02-17 21:21:31.159oai:locus.ufv.br:123456789/23550Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-02-18T00:21:31LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
The ϕ-Dimension: A new homological measure |
title |
The ϕ-Dimension: A new homological measure |
spellingShingle |
The ϕ-Dimension: A new homological measure Fernandes, Sônia Maria Finitistic dimension Igusa-Todorov functions Derived categories |
title_short |
The ϕ-Dimension: A new homological measure |
title_full |
The ϕ-Dimension: A new homological measure |
title_fullStr |
The ϕ-Dimension: A new homological measure |
title_full_unstemmed |
The ϕ-Dimension: A new homological measure |
title_sort |
The ϕ-Dimension: A new homological measure |
author |
Fernandes, Sônia Maria |
author_facet |
Fernandes, Sônia Maria Lanzilotta, Marcelo Hernández, Octavio Mendoza |
author_role |
author |
author2 |
Lanzilotta, Marcelo Hernández, Octavio Mendoza |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fernandes, Sônia Maria Lanzilotta, Marcelo Hernández, Octavio Mendoza |
dc.subject.pt-BR.fl_str_mv |
Finitistic dimension Igusa-Todorov functions Derived categories |
topic |
Finitistic dimension Igusa-Todorov functions Derived categories |
description |
In Igusa and Todorov (2005) introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms of the bi-functors ExtiA(−,−)ExtAi(−,−) and in terms of Tor’s bi-functors TorAi(−,−).ToriA(−,−). Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result (Bongartz, Lect. Notes Math. 903, 26–38, (1981), Corollary 1) as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra B = End A (T) o p , we have that ϕ dim (A) − pd T ≤ ϕ dim (B) ≤ ϕ dim (A) + pd T. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-04 |
dc.date.accessioned.fl_str_mv |
2019-02-18T00:12:27Z |
dc.date.available.fl_str_mv |
2019-02-18T00:12:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1007/s10468-014-9504-9 http://www.locus.ufv.br/handle/123456789/23550 |
dc.identifier.issn.none.fl_str_mv |
1572-9079 |
identifier_str_mv |
1572-9079 |
url |
https://doi.org/10.1007/s10468-014-9504-9 http://www.locus.ufv.br/handle/123456789/23550 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 18, Issue 2, Pages 463–476, April 2015 |
dc.rights.driver.fl_str_mv |
Springer Science+Business Media Dordrecht info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Springer Science+Business Media Dordrecht |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Algebras and Representation Theory |
publisher.none.fl_str_mv |
Algebras and Representation Theory |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/23550/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/23550/2/license.txt |
bitstream.checksum.fl_str_mv |
c3e5e66ec257b091f3741b39aecf1f21 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212860464889856 |