The ϕ-Dimension: A new homological measure

Detalhes bibliográficos
Autor(a) principal: Fernandes, Sônia Maria
Data de Publicação: 2015
Outros Autores: Lanzilotta, Marcelo, Hernández, Octavio Mendoza
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1007/s10468-014-9504-9
http://www.locus.ufv.br/handle/123456789/23550
Resumo: In Igusa and Todorov (2005) introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms of the bi-functors ExtiA(−,−)ExtAi(−,−) and in terms of Tor’s bi-functors TorAi(−,−).ToriA(−,−). Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result (Bongartz, Lect. Notes Math. 903, 26–38, (1981), Corollary 1) as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra B = End A (T) o p , we have that ϕ dim (A) − pd T ≤ ϕ dim (B) ≤ ϕ dim (A) + pd T.
id UFV_8dea5df5805b5ed3a1adc7adf851f5ce
oai_identifier_str oai:locus.ufv.br:123456789/23550
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Fernandes, Sônia MariaLanzilotta, MarceloHernández, Octavio Mendoza2019-02-18T00:12:27Z2019-02-18T00:12:27Z2015-041572-9079https://doi.org/10.1007/s10468-014-9504-9http://www.locus.ufv.br/handle/123456789/23550In Igusa and Todorov (2005) introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms of the bi-functors ExtiA(−,−)ExtAi(−,−) and in terms of Tor’s bi-functors TorAi(−,−).ToriA(−,−). Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result (Bongartz, Lect. Notes Math. 903, 26–38, (1981), Corollary 1) as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra B = End A (T) o p , we have that ϕ dim (A) − pd T ≤ ϕ dim (B) ≤ ϕ dim (A) + pd T.engAlgebras and Representation TheoryVolume 18, Issue 2, Pages 463–476, April 2015Springer Science+Business Media Dordrechtinfo:eu-repo/semantics/openAccessFinitistic dimensionIgusa-Todorov functionsDerived categoriesThe ϕ-Dimension: A new homological measureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf375166https://locus.ufv.br//bitstream/123456789/23550/1/artigo.pdfc3e5e66ec257b091f3741b39aecf1f21MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23550/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/235502019-02-17 21:21:31.159oai:locus.ufv.br:123456789/23550Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-02-18T00:21:31LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv The ϕ-Dimension: A new homological measure
title The ϕ-Dimension: A new homological measure
spellingShingle The ϕ-Dimension: A new homological measure
Fernandes, Sônia Maria
Finitistic dimension
Igusa-Todorov functions
Derived categories
title_short The ϕ-Dimension: A new homological measure
title_full The ϕ-Dimension: A new homological measure
title_fullStr The ϕ-Dimension: A new homological measure
title_full_unstemmed The ϕ-Dimension: A new homological measure
title_sort The ϕ-Dimension: A new homological measure
author Fernandes, Sônia Maria
author_facet Fernandes, Sônia Maria
Lanzilotta, Marcelo
Hernández, Octavio Mendoza
author_role author
author2 Lanzilotta, Marcelo
Hernández, Octavio Mendoza
author2_role author
author
dc.contributor.author.fl_str_mv Fernandes, Sônia Maria
Lanzilotta, Marcelo
Hernández, Octavio Mendoza
dc.subject.pt-BR.fl_str_mv Finitistic dimension
Igusa-Todorov functions
Derived categories
topic Finitistic dimension
Igusa-Todorov functions
Derived categories
description In Igusa and Todorov (2005) introduced two functions ϕ and ψ, which are natural and important homological measures generalising the notion of the projective dimension. These Igusa-Todorov functions have become a powerful tool to understand better the finitistic dimension conjecture. In this paper, for an artin R-algebra A and the Igusa-Todorov function ϕ, we characterise the ϕ-dimension of A in terms of the bi-functors ExtiA(−,−)ExtAi(−,−) and in terms of Tor’s bi-functors TorAi(−,−).ToriA(−,−). Furthermore, by using the first characterisation of the ϕ-dimension, we show that the finiteness of the ϕ-dimension of an artin algebra is invariant under derived equivalences. As an application of this result, we generalise the classical Bongartz’s result (Bongartz, Lect. Notes Math. 903, 26–38, (1981), Corollary 1) as follows: For an artin algebra A, a tilting A-module T and the endomorphism algebra B = End A (T) o p , we have that ϕ dim (A) − pd T ≤ ϕ dim (B) ≤ ϕ dim (A) + pd T.
publishDate 2015
dc.date.issued.fl_str_mv 2015-04
dc.date.accessioned.fl_str_mv 2019-02-18T00:12:27Z
dc.date.available.fl_str_mv 2019-02-18T00:12:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1007/s10468-014-9504-9
http://www.locus.ufv.br/handle/123456789/23550
dc.identifier.issn.none.fl_str_mv 1572-9079
identifier_str_mv 1572-9079
url https://doi.org/10.1007/s10468-014-9504-9
http://www.locus.ufv.br/handle/123456789/23550
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 18, Issue 2, Pages 463–476, April 2015
dc.rights.driver.fl_str_mv Springer Science+Business Media Dordrecht
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer Science+Business Media Dordrecht
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Algebras and Representation Theory
publisher.none.fl_str_mv Algebras and Representation Theory
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/23550/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/23550/2/license.txt
bitstream.checksum.fl_str_mv c3e5e66ec257b091f3741b39aecf1f21
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212860464889856