Geometria hiperbólica e aplicações

Detalhes bibliográficos
Autor(a) principal: Batista, Pollyanna Débora da Silva
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/27512
Resumo: Durante centenas de anos vários matemáticos se debruçaram sobre o problema de obter o postulado 5 de Euclides (ou postulado das paralelas) a partir dos demais. János Bolyai (1802-1860) e Nikolai Lobachevsky (1792-1856) descobriram, indepen- dentemente, uma nova geometria, conhecida por Geometria Hiperbólica. Nessa geometria, o postulado 5 de Euclides é falso. De fato, dados uma “reta” e um ponto fora dessa, existem infinitas “retas” passando por esse ponto que são paralelas à reta dada. Estudaremos como se deu o surgimento dessa geometria, bem como algumas propriedades específicas. Em particular, daremos atenção a certas curvas especiais (geodésicas) e sugestões de como aplicar esse conhecimento no ensino médio
id UFV_8fe044b7d77d48ad7de041e1e1832fe8
oai_identifier_str oai:locus.ufv.br:123456789/27512
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Batista, Pollyanna Débora da SilvaJúnior, Justino Muniz2020-01-07T12:31:49Z2020-01-07T12:31:49Z2019-02-26BATISTA, Pollyanna Débora da Silva. Geometria hiperbólica e aplicações. 2019. 112 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Florestal. 2019.https://locus.ufv.br//handle/123456789/27512Durante centenas de anos vários matemáticos se debruçaram sobre o problema de obter o postulado 5 de Euclides (ou postulado das paralelas) a partir dos demais. János Bolyai (1802-1860) e Nikolai Lobachevsky (1792-1856) descobriram, indepen- dentemente, uma nova geometria, conhecida por Geometria Hiperbólica. Nessa geometria, o postulado 5 de Euclides é falso. De fato, dados uma “reta” e um ponto fora dessa, existem infinitas “retas” passando por esse ponto que são paralelas à reta dada. Estudaremos como se deu o surgimento dessa geometria, bem como algumas propriedades específicas. Em particular, daremos atenção a certas curvas especiais (geodésicas) e sugestões de como aplicar esse conhecimento no ensino médioFor hundreds of years mathematicians had problem of obtaining Euclid's postulate 5 (or postulate of parallels) to from the others. János Bolyai (1802-1860) and Nikolai Lobachevsky (1792-1856) discovered, independently, a new geometry, known as Hyperbolic Geometry. In this geometry Euclid's postulate 5 is false. In fact, given a “straight” and a point outside that, there are infinite “straight lines” passing through this point that are parallel to the given line. We will study how the appearance of this geometry occurred, as well as some properties. In particular, we will give attention to certain special (geodesic) curves and suggestions on how to apply this knowledge in high school.porUniversidade Federal de ViçosaGeometria hiperbólicaGeometriaModelo de PoincaréMatemática-Educação e ensinoMatemáticaGeometria hiperbólica e aplicaçõesHyperbolic geometry and applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de MatemáticaMestre em MatemáticaFlorestal - MG2019-02-26Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf3407553https://locus.ufv.br//bitstream/123456789/27512/1/texto%20completo.pdfa99ab0a358e81214c02e083b6c0ad88fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/27512/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/275122020-01-27 13:27:58.556oai:locus.ufv.br:123456789/27512Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452020-01-27T16:27:58LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Geometria hiperbólica e aplicações
dc.title.en.fl_str_mv Hyperbolic geometry and applications
title Geometria hiperbólica e aplicações
spellingShingle Geometria hiperbólica e aplicações
Batista, Pollyanna Débora da Silva
Geometria hiperbólica
Geometria
Modelo de Poincaré
Matemática-Educação e ensino
Matemática
title_short Geometria hiperbólica e aplicações
title_full Geometria hiperbólica e aplicações
title_fullStr Geometria hiperbólica e aplicações
title_full_unstemmed Geometria hiperbólica e aplicações
title_sort Geometria hiperbólica e aplicações
author Batista, Pollyanna Débora da Silva
author_facet Batista, Pollyanna Débora da Silva
author_role author
dc.contributor.author.fl_str_mv Batista, Pollyanna Débora da Silva
dc.contributor.advisor1.fl_str_mv Júnior, Justino Muniz
contributor_str_mv Júnior, Justino Muniz
dc.subject.pt-BR.fl_str_mv Geometria hiperbólica
Geometria
Modelo de Poincaré
Matemática-Educação e ensino
topic Geometria hiperbólica
Geometria
Modelo de Poincaré
Matemática-Educação e ensino
Matemática
dc.subject.cnpq.fl_str_mv Matemática
description Durante centenas de anos vários matemáticos se debruçaram sobre o problema de obter o postulado 5 de Euclides (ou postulado das paralelas) a partir dos demais. János Bolyai (1802-1860) e Nikolai Lobachevsky (1792-1856) descobriram, indepen- dentemente, uma nova geometria, conhecida por Geometria Hiperbólica. Nessa geometria, o postulado 5 de Euclides é falso. De fato, dados uma “reta” e um ponto fora dessa, existem infinitas “retas” passando por esse ponto que são paralelas à reta dada. Estudaremos como se deu o surgimento dessa geometria, bem como algumas propriedades específicas. Em particular, daremos atenção a certas curvas especiais (geodésicas) e sugestões de como aplicar esse conhecimento no ensino médio
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-26
dc.date.accessioned.fl_str_mv 2020-01-07T12:31:49Z
dc.date.available.fl_str_mv 2020-01-07T12:31:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BATISTA, Pollyanna Débora da Silva. Geometria hiperbólica e aplicações. 2019. 112 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Florestal. 2019.
dc.identifier.uri.fl_str_mv https://locus.ufv.br//handle/123456789/27512
identifier_str_mv BATISTA, Pollyanna Débora da Silva. Geometria hiperbólica e aplicações. 2019. 112 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Florestal. 2019.
url https://locus.ufv.br//handle/123456789/27512
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/27512/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/27512/2/license.txt
bitstream.checksum.fl_str_mv a99ab0a358e81214c02e083b6c0ad88f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213081221595136