Critical singular problems via concentration-compactness lemma
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.jmaa.2006.03.002 http://www.locus.ufv.br/handle/123456789/23625 |
Resumo: | In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in RN of the form (P)−div[|x|−ap|∇u|p−2∇u]+λ|x|−(a+1)p|u|p−2u=|x|−bq|u|q−2u+f, where x∈RN, 1<p<N, q=q(a,b)≡Np/[N−p(a+1−b)], λ is a parameter, 0⩽a<(N−p)/p, a⩽b⩽a+1, and f∈(Lbq(RN))∗. We look for solutions of problem (P) in the Sobolev space Da1,p(RN) and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the Ekeland's variational principle and the mountain-pass theorem, we obtain existence and multiplicity results. |
id |
UFV_a1ed2ae24f4198a54223071e35d5cbbe |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/23625 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Critical singular problems via concentration-compactness lemmaDegenerate quasilinear equationp-LaplacianVariational methodsCompactness-concentrationIn this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in RN of the form (P)−div[|x|−ap|∇u|p−2∇u]+λ|x|−(a+1)p|u|p−2u=|x|−bq|u|q−2u+f, where x∈RN, 1<p<N, q=q(a,b)≡Np/[N−p(a+1−b)], λ is a parameter, 0⩽a<(N−p)/p, a⩽b⩽a+1, and f∈(Lbq(RN))∗. We look for solutions of problem (P) in the Sobolev space Da1,p(RN) and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the Ekeland's variational principle and the mountain-pass theorem, we obtain existence and multiplicity results.Journal of Mathematical Analysis and Applications2019-02-20T18:07:55Z2019-02-20T18:07:55Z2007-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf0022-247Xhttps://doi.org/10.1016/j.jmaa.2006.03.002http://www.locus.ufv.br/handle/123456789/23625engVolume 326, Issue 1, Pages 137-154, February 2007Miyagaki, Olimpio HiroshiAssunção, Ronaldo B.Carrião, Paulo Cesarinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T06:14:51Zoai:locus.ufv.br:123456789/23625Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T06:14:51LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Critical singular problems via concentration-compactness lemma |
title |
Critical singular problems via concentration-compactness lemma |
spellingShingle |
Critical singular problems via concentration-compactness lemma Miyagaki, Olimpio Hiroshi Degenerate quasilinear equation p-Laplacian Variational methods Compactness-concentration |
title_short |
Critical singular problems via concentration-compactness lemma |
title_full |
Critical singular problems via concentration-compactness lemma |
title_fullStr |
Critical singular problems via concentration-compactness lemma |
title_full_unstemmed |
Critical singular problems via concentration-compactness lemma |
title_sort |
Critical singular problems via concentration-compactness lemma |
author |
Miyagaki, Olimpio Hiroshi |
author_facet |
Miyagaki, Olimpio Hiroshi Assunção, Ronaldo B. Carrião, Paulo Cesar |
author_role |
author |
author2 |
Assunção, Ronaldo B. Carrião, Paulo Cesar |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Miyagaki, Olimpio Hiroshi Assunção, Ronaldo B. Carrião, Paulo Cesar |
dc.subject.por.fl_str_mv |
Degenerate quasilinear equation p-Laplacian Variational methods Compactness-concentration |
topic |
Degenerate quasilinear equation p-Laplacian Variational methods Compactness-concentration |
description |
In this work we consider existence and multiplicity results of nontrivial solutions for a class of quasilinear degenerate elliptic equations in RN of the form (P)−div[|x|−ap|∇u|p−2∇u]+λ|x|−(a+1)p|u|p−2u=|x|−bq|u|q−2u+f, where x∈RN, 1<p<N, q=q(a,b)≡Np/[N−p(a+1−b)], λ is a parameter, 0⩽a<(N−p)/p, a⩽b⩽a+1, and f∈(Lbq(RN))∗. We look for solutions of problem (P) in the Sobolev space Da1,p(RN) and we prove a version of a concentration-compactness lemma due to Lions. Combining this result with the Ekeland's variational principle and the mountain-pass theorem, we obtain existence and multiplicity results. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-02-01 2019-02-20T18:07:55Z 2019-02-20T18:07:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0022-247X https://doi.org/10.1016/j.jmaa.2006.03.002 http://www.locus.ufv.br/handle/123456789/23625 |
identifier_str_mv |
0022-247X |
url |
https://doi.org/10.1016/j.jmaa.2006.03.002 http://www.locus.ufv.br/handle/123456789/23625 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Volume 326, Issue 1, Pages 137-154, February 2007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
pdf application/pdf |
dc.publisher.none.fl_str_mv |
Journal of Mathematical Analysis and Applications |
publisher.none.fl_str_mv |
Journal of Mathematical Analysis and Applications |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1822610539523604480 |