Climate change and electricity demand in Brazil: a stochastic approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.energy.2016.02.120 http://www.locus.ufv.br/handle/123456789/21818 |
Resumo: | We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016e2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071e1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean. |
id |
UFV_a3de1b6e9323952c2c2e60415665077f |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/21818 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Trotter, Ian M.Bolkesjø, Torjus FolslandFéres, José GustavoHollanda, Lavinia2018-09-13T17:56:04Z2018-09-13T17:56:04Z2016-05-0103605442https://doi.org/10.1016/j.energy.2016.02.120http://www.locus.ufv.br/handle/123456789/21818We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016e2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071e1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean.engEnergyv. 102, p. 596- 6041, mai. 2016Elsevier Ltd.info:eu-repo/semantics/openAccessLong-term load forecastElectricity demandClimate changeClimate change and electricity demand in Brazil: a stochastic approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1786090https://locus.ufv.br//bitstream/123456789/21818/1/artigo.pdf97f5298097fa2f6ebfd0476895642bbcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21818/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5211https://locus.ufv.br//bitstream/123456789/21818/3/artigo.pdf.jpgc79cb85653be5fa7b8d9c61240132c5bMD53123456789/218182018-09-13 23:00:45.892oai:locus.ufv.br:123456789/21818Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-14T02:00:45LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Climate change and electricity demand in Brazil: a stochastic approach |
title |
Climate change and electricity demand in Brazil: a stochastic approach |
spellingShingle |
Climate change and electricity demand in Brazil: a stochastic approach Trotter, Ian M. Long-term load forecast Electricity demand Climate change |
title_short |
Climate change and electricity demand in Brazil: a stochastic approach |
title_full |
Climate change and electricity demand in Brazil: a stochastic approach |
title_fullStr |
Climate change and electricity demand in Brazil: a stochastic approach |
title_full_unstemmed |
Climate change and electricity demand in Brazil: a stochastic approach |
title_sort |
Climate change and electricity demand in Brazil: a stochastic approach |
author |
Trotter, Ian M. |
author_facet |
Trotter, Ian M. Bolkesjø, Torjus Folsland Féres, José Gustavo Hollanda, Lavinia |
author_role |
author |
author2 |
Bolkesjø, Torjus Folsland Féres, José Gustavo Hollanda, Lavinia |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Trotter, Ian M. Bolkesjø, Torjus Folsland Féres, José Gustavo Hollanda, Lavinia |
dc.subject.pt-BR.fl_str_mv |
Long-term load forecast Electricity demand Climate change |
topic |
Long-term load forecast Electricity demand Climate change |
description |
We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016e2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071e1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-05-01 |
dc.date.accessioned.fl_str_mv |
2018-09-13T17:56:04Z |
dc.date.available.fl_str_mv |
2018-09-13T17:56:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.energy.2016.02.120 http://www.locus.ufv.br/handle/123456789/21818 |
dc.identifier.issn.none.fl_str_mv |
03605442 |
identifier_str_mv |
03605442 |
url |
https://doi.org/10.1016/j.energy.2016.02.120 http://www.locus.ufv.br/handle/123456789/21818 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 102, p. 596- 6041, mai. 2016 |
dc.rights.driver.fl_str_mv |
Elsevier Ltd. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier Ltd. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Energy |
publisher.none.fl_str_mv |
Energy |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/21818/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/21818/2/license.txt https://locus.ufv.br//bitstream/123456789/21818/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
97f5298097fa2f6ebfd0476895642bbc 8a4605be74aa9ea9d79846c1fba20a33 c79cb85653be5fa7b8d9c61240132c5b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212892714893312 |