Climate change and electricity demand in Brazil: a stochastic approach

Detalhes bibliográficos
Autor(a) principal: Trotter, Ian M.
Data de Publicação: 2016
Outros Autores: Bolkesjø, Torjus Folsland, Féres, José Gustavo, Hollanda, Lavinia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.energy.2016.02.120
http://www.locus.ufv.br/handle/123456789/21818
Resumo: We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016e2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071e1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean.
id UFV_a3de1b6e9323952c2c2e60415665077f
oai_identifier_str oai:locus.ufv.br:123456789/21818
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Trotter, Ian M.Bolkesjø, Torjus FolslandFéres, José GustavoHollanda, Lavinia2018-09-13T17:56:04Z2018-09-13T17:56:04Z2016-05-0103605442https://doi.org/10.1016/j.energy.2016.02.120http://www.locus.ufv.br/handle/123456789/21818We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016e2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071e1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean.engEnergyv. 102, p. 596- 6041, mai. 2016Elsevier Ltd.info:eu-repo/semantics/openAccessLong-term load forecastElectricity demandClimate changeClimate change and electricity demand in Brazil: a stochastic approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1786090https://locus.ufv.br//bitstream/123456789/21818/1/artigo.pdf97f5298097fa2f6ebfd0476895642bbcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21818/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5211https://locus.ufv.br//bitstream/123456789/21818/3/artigo.pdf.jpgc79cb85653be5fa7b8d9c61240132c5bMD53123456789/218182018-09-13 23:00:45.892oai:locus.ufv.br:123456789/21818Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-14T02:00:45LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Climate change and electricity demand in Brazil: a stochastic approach
title Climate change and electricity demand in Brazil: a stochastic approach
spellingShingle Climate change and electricity demand in Brazil: a stochastic approach
Trotter, Ian M.
Long-term load forecast
Electricity demand
Climate change
title_short Climate change and electricity demand in Brazil: a stochastic approach
title_full Climate change and electricity demand in Brazil: a stochastic approach
title_fullStr Climate change and electricity demand in Brazil: a stochastic approach
title_full_unstemmed Climate change and electricity demand in Brazil: a stochastic approach
title_sort Climate change and electricity demand in Brazil: a stochastic approach
author Trotter, Ian M.
author_facet Trotter, Ian M.
Bolkesjø, Torjus Folsland
Féres, José Gustavo
Hollanda, Lavinia
author_role author
author2 Bolkesjø, Torjus Folsland
Féres, José Gustavo
Hollanda, Lavinia
author2_role author
author
author
dc.contributor.author.fl_str_mv Trotter, Ian M.
Bolkesjø, Torjus Folsland
Féres, José Gustavo
Hollanda, Lavinia
dc.subject.pt-BR.fl_str_mv Long-term load forecast
Electricity demand
Climate change
topic Long-term load forecast
Electricity demand
Climate change
description We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016e2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071e1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean.
publishDate 2016
dc.date.issued.fl_str_mv 2016-05-01
dc.date.accessioned.fl_str_mv 2018-09-13T17:56:04Z
dc.date.available.fl_str_mv 2018-09-13T17:56:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.energy.2016.02.120
http://www.locus.ufv.br/handle/123456789/21818
dc.identifier.issn.none.fl_str_mv 03605442
identifier_str_mv 03605442
url https://doi.org/10.1016/j.energy.2016.02.120
http://www.locus.ufv.br/handle/123456789/21818
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 102, p. 596- 6041, mai. 2016
dc.rights.driver.fl_str_mv Elsevier Ltd.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier Ltd.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Energy
publisher.none.fl_str_mv Energy
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21818/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21818/2/license.txt
https://locus.ufv.br//bitstream/123456789/21818/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 97f5298097fa2f6ebfd0476895642bbc
8a4605be74aa9ea9d79846c1fba20a33
c79cb85653be5fa7b8d9c61240132c5b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212892714893312