Modelo para geração de séries sintéticas de dados climáticos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://www.locus.ufv.br/handle/123456789/9699 |
Resumo: | Neste trabalho desenvolveu-se um modelo, e um software a ele associado, para a geração de séries sintéticas de dados climáticos, por meio do aprimoramento da metodologia para a geração das variáveis associadas ao perfil da precipitação utilizada no modelo para geração de séries sintéticas de precipitação (ClimaBR) e do desenvolvimento de um modelo para geração de séries sintéticas de temperaturas máxima e mínima, radiação solar, velocidade do vento e umidade relativa. Para a geração da duração, intensidade máxima instantânea e tempo para sua ocorrência foram estabelecidas sete regiões homogêneas em termos de precipitação, para as quais determinou-se os parâmetros de entrada necessários para a geração de cada variável. Utilizou-se a distribuição gama para a geração da duração e da intensidade máxima instantânea da precipitação, e a exponencial para a geração do tempo de ocorrência da intensidade máxima instantânea. Os parâmetros de cada distribuição foram obtidos conforme o mês e a faixa de total precipitado para se considerar a influência da época do ano e a correlação entre as variáveis e o total precipitado. As temperaturas máxima e mínima e a radiação solar foram geradas de forma conjunta, considerando o alto grau de associação existente entre elas, sendo considerada ainda a condição do dia (seca ou chuvosa). A velocidade do vento e a umidade relativa foram geradas com base nas distribuições de probabilidade Pearson tipo III normalizada e beta, respectivamente, sendo também considerada na sua geração a condição do dia. A avaliação do desempenho do modelo foi feita comparando-se os dados gerados pelo modelo com os observados, analisando-se o erro relativo percentual, o índice de confiança, o coeficiente de correlação da reta de regressão linear e os testes de Kolmogorov-Smirnov e Qui-quadrado. Os erros relativos percentuais variaram entre 5 e 30% para as variáveis associadas ao perfil de precipitação, sendo observados valores mais baixos nos meses mais chuvosos. O índice de confiança também apresentou resultados muito bons para esta variável, variando entre 0,64 e 0,99 nas sete regiões homogêneas, sendo ainda que os testes de aderência aplicados às distribuições de freqüência dos eventos observados e gerados foram significativos em todas as regiões. Com relação às temperaturas máxima e mínima, radiação solar, velocidade do vento e umidade relativa, os resultados foram ainda mais expressivos, com o erro relativo percentual variando entre 1 e 10%, o índice de confiança sempre superior a 0,75 e os testes de aderência significativos. As correlações entre as variáveis geradas de forma conjunta no modelo multivariado foram mantidas, porém o modelo não representou bem a expressiva correlação da temperatura máxima e da radiação solar com a umidade relativa. Além disso, apesar do modelo ter apresentado resultados muito bons quanto à relação de cada variável com a condição do dia, a correlação com o total precipitado não foi bem representada. O modelo computacional desenvolvido, denominado ClimaBR 2.0, que emprega os aprimoramentos e desenvolvimentos realizados, permite a seleção de estações pluviométricas e climatológicas a partir de um banco de dados de fácil manipulação, possibilitando então a geração de séries sintéticas de dados climáticos para diversas localidades do Brasil. |
id |
UFV_acf71f7531e403c12e55b90a6dc08f5c |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/9699 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Silva, Demetrius David daSediyama, Gilberto ChohakuBaena, Luiz Gustavo Nascenteshttp://lattes.cnpq.br/0292382803088621Pruski, Fernando Falco2017-03-06T15:28:12Z2017-03-06T15:28:12Z2004-10-18BAENA, Luiz Gustavo Nascentes. Modelo para geração de séries sintéticas de dados climáticos. 2004. 155 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Viçosa, Viçosa. 2004.http://www.locus.ufv.br/handle/123456789/9699Neste trabalho desenvolveu-se um modelo, e um software a ele associado, para a geração de séries sintéticas de dados climáticos, por meio do aprimoramento da metodologia para a geração das variáveis associadas ao perfil da precipitação utilizada no modelo para geração de séries sintéticas de precipitação (ClimaBR) e do desenvolvimento de um modelo para geração de séries sintéticas de temperaturas máxima e mínima, radiação solar, velocidade do vento e umidade relativa. Para a geração da duração, intensidade máxima instantânea e tempo para sua ocorrência foram estabelecidas sete regiões homogêneas em termos de precipitação, para as quais determinou-se os parâmetros de entrada necessários para a geração de cada variável. Utilizou-se a distribuição gama para a geração da duração e da intensidade máxima instantânea da precipitação, e a exponencial para a geração do tempo de ocorrência da intensidade máxima instantânea. Os parâmetros de cada distribuição foram obtidos conforme o mês e a faixa de total precipitado para se considerar a influência da época do ano e a correlação entre as variáveis e o total precipitado. As temperaturas máxima e mínima e a radiação solar foram geradas de forma conjunta, considerando o alto grau de associação existente entre elas, sendo considerada ainda a condição do dia (seca ou chuvosa). A velocidade do vento e a umidade relativa foram geradas com base nas distribuições de probabilidade Pearson tipo III normalizada e beta, respectivamente, sendo também considerada na sua geração a condição do dia. A avaliação do desempenho do modelo foi feita comparando-se os dados gerados pelo modelo com os observados, analisando-se o erro relativo percentual, o índice de confiança, o coeficiente de correlação da reta de regressão linear e os testes de Kolmogorov-Smirnov e Qui-quadrado. Os erros relativos percentuais variaram entre 5 e 30% para as variáveis associadas ao perfil de precipitação, sendo observados valores mais baixos nos meses mais chuvosos. O índice de confiança também apresentou resultados muito bons para esta variável, variando entre 0,64 e 0,99 nas sete regiões homogêneas, sendo ainda que os testes de aderência aplicados às distribuições de freqüência dos eventos observados e gerados foram significativos em todas as regiões. Com relação às temperaturas máxima e mínima, radiação solar, velocidade do vento e umidade relativa, os resultados foram ainda mais expressivos, com o erro relativo percentual variando entre 1 e 10%, o índice de confiança sempre superior a 0,75 e os testes de aderência significativos. As correlações entre as variáveis geradas de forma conjunta no modelo multivariado foram mantidas, porém o modelo não representou bem a expressiva correlação da temperatura máxima e da radiação solar com a umidade relativa. Além disso, apesar do modelo ter apresentado resultados muito bons quanto à relação de cada variável com a condição do dia, a correlação com o total precipitado não foi bem representada. O modelo computacional desenvolvido, denominado ClimaBR 2.0, que emprega os aprimoramentos e desenvolvimentos realizados, permite a seleção de estações pluviométricas e climatológicas a partir de um banco de dados de fácil manipulação, possibilitando então a geração de séries sintéticas de dados climáticos para diversas localidades do Brasil.A new climate generator was developed to generate synthetic series of precipitation, maximum and minimum temperatures, solar radiation, wind speed and relative humidity. The parameters associated to the precipitation profile were calculated to seven precipitation homogeneous regions. Event duration and instantaneous maximum precipitation were represented with a gamma distribution, while the time from the beginning of the event to peak intensity was represented with an exponential distribution. The parameters of each distribution were obtained for each month and each group of precipitation amount, in order to consider the influence of the station of the year and the correlation among the variables associated to the precipitation profile and the precipitation amount. The maximum and minimum temperatures and the solar radiation were generated simultaneously, to consider the high correlation observed between these variables. The wind speed and the relative humidity were described by the Pearson tipo III and beta distributions, respectively. All the five climatic variables were conditioned on the wet/dry status of the present day. The validation of the model was done comparing the generated data with the observed one, analisyng the relative error, agreement index, correlation coefficient of a least-squares regression and the Kolmogorov-Smirnov and chi-square goodness of fit tests. The relative errors had varied between 5 to 30% for the variables associated to the precipitation profile. It was observed lower values on the rainy days. The agreement index showed good results for this variable too, varying between 0,64 to 0,99 in the seven homogeneous regions. The K-S and chi-square tests were significant in all regions. The results to the maximum and minimum temperatures, solar radiation, wind speed and relative humidity were still more satisfactory, with the relative error varying between 1 and 10%, the agreement index allways higher than 0,75 and the goodness of fit tests significant. The correlations among the variables included in the multivariate process were maintained; however the model didn’t represent the high correlation observed between the maximum temperature and the solar radiation with the relative humidity. Moreover the model presented good results to the relation of each variable with the wet/dry status of the day, the correlation with the precipitation amount was not preserved. The software ClimaBR allows the selection of pluviometric and climatologic stations from a data base, making possible the generation of synthetic series of climate data.Conselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de ViçosaModelagem hidrológicaClima; PrecipitaçãoErosão hídricaDesenvolvimento sustentávelMeio ambienteCiências AgráriasModelo para geração de séries sintéticas de dados climáticosModel for generating sintetic series of climatic datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal de ViçosaDepartamento de Engenharia AgrícolaDoutor em Engenharia AgrícolaViçosa - MG2004-10-18Doutoradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf3456017https://locus.ufv.br//bitstream/123456789/9699/1/texto%20completo.pdf95589c8dd518b0837ba83c4a16e3e81eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/9699/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3673https://locus.ufv.br//bitstream/123456789/9699/3/texto%20completo.pdf.jpg2e53b286fe9af5595bcd4a8b457b0077MD53123456789/96992017-03-06 23:00:30.035oai:locus.ufv.br:123456789/9699Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-03-07T02:00:30LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Modelo para geração de séries sintéticas de dados climáticos |
dc.title.en.fl_str_mv |
Model for generating sintetic series of climatic data |
title |
Modelo para geração de séries sintéticas de dados climáticos |
spellingShingle |
Modelo para geração de séries sintéticas de dados climáticos Baena, Luiz Gustavo Nascentes Modelagem hidrológica Clima; Precipitação Erosão hídrica Desenvolvimento sustentável Meio ambiente Ciências Agrárias |
title_short |
Modelo para geração de séries sintéticas de dados climáticos |
title_full |
Modelo para geração de séries sintéticas de dados climáticos |
title_fullStr |
Modelo para geração de séries sintéticas de dados climáticos |
title_full_unstemmed |
Modelo para geração de séries sintéticas de dados climáticos |
title_sort |
Modelo para geração de séries sintéticas de dados climáticos |
author |
Baena, Luiz Gustavo Nascentes |
author_facet |
Baena, Luiz Gustavo Nascentes |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/0292382803088621 |
dc.contributor.none.fl_str_mv |
Silva, Demetrius David da Sediyama, Gilberto Chohaku |
dc.contributor.author.fl_str_mv |
Baena, Luiz Gustavo Nascentes |
dc.contributor.advisor1.fl_str_mv |
Pruski, Fernando Falco |
contributor_str_mv |
Pruski, Fernando Falco |
dc.subject.pt-BR.fl_str_mv |
Modelagem hidrológica Clima; Precipitação Erosão hídrica Desenvolvimento sustentável Meio ambiente |
topic |
Modelagem hidrológica Clima; Precipitação Erosão hídrica Desenvolvimento sustentável Meio ambiente Ciências Agrárias |
dc.subject.cnpq.fl_str_mv |
Ciências Agrárias |
description |
Neste trabalho desenvolveu-se um modelo, e um software a ele associado, para a geração de séries sintéticas de dados climáticos, por meio do aprimoramento da metodologia para a geração das variáveis associadas ao perfil da precipitação utilizada no modelo para geração de séries sintéticas de precipitação (ClimaBR) e do desenvolvimento de um modelo para geração de séries sintéticas de temperaturas máxima e mínima, radiação solar, velocidade do vento e umidade relativa. Para a geração da duração, intensidade máxima instantânea e tempo para sua ocorrência foram estabelecidas sete regiões homogêneas em termos de precipitação, para as quais determinou-se os parâmetros de entrada necessários para a geração de cada variável. Utilizou-se a distribuição gama para a geração da duração e da intensidade máxima instantânea da precipitação, e a exponencial para a geração do tempo de ocorrência da intensidade máxima instantânea. Os parâmetros de cada distribuição foram obtidos conforme o mês e a faixa de total precipitado para se considerar a influência da época do ano e a correlação entre as variáveis e o total precipitado. As temperaturas máxima e mínima e a radiação solar foram geradas de forma conjunta, considerando o alto grau de associação existente entre elas, sendo considerada ainda a condição do dia (seca ou chuvosa). A velocidade do vento e a umidade relativa foram geradas com base nas distribuições de probabilidade Pearson tipo III normalizada e beta, respectivamente, sendo também considerada na sua geração a condição do dia. A avaliação do desempenho do modelo foi feita comparando-se os dados gerados pelo modelo com os observados, analisando-se o erro relativo percentual, o índice de confiança, o coeficiente de correlação da reta de regressão linear e os testes de Kolmogorov-Smirnov e Qui-quadrado. Os erros relativos percentuais variaram entre 5 e 30% para as variáveis associadas ao perfil de precipitação, sendo observados valores mais baixos nos meses mais chuvosos. O índice de confiança também apresentou resultados muito bons para esta variável, variando entre 0,64 e 0,99 nas sete regiões homogêneas, sendo ainda que os testes de aderência aplicados às distribuições de freqüência dos eventos observados e gerados foram significativos em todas as regiões. Com relação às temperaturas máxima e mínima, radiação solar, velocidade do vento e umidade relativa, os resultados foram ainda mais expressivos, com o erro relativo percentual variando entre 1 e 10%, o índice de confiança sempre superior a 0,75 e os testes de aderência significativos. As correlações entre as variáveis geradas de forma conjunta no modelo multivariado foram mantidas, porém o modelo não representou bem a expressiva correlação da temperatura máxima e da radiação solar com a umidade relativa. Além disso, apesar do modelo ter apresentado resultados muito bons quanto à relação de cada variável com a condição do dia, a correlação com o total precipitado não foi bem representada. O modelo computacional desenvolvido, denominado ClimaBR 2.0, que emprega os aprimoramentos e desenvolvimentos realizados, permite a seleção de estações pluviométricas e climatológicas a partir de um banco de dados de fácil manipulação, possibilitando então a geração de séries sintéticas de dados climáticos para diversas localidades do Brasil. |
publishDate |
2004 |
dc.date.issued.fl_str_mv |
2004-10-18 |
dc.date.accessioned.fl_str_mv |
2017-03-06T15:28:12Z |
dc.date.available.fl_str_mv |
2017-03-06T15:28:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BAENA, Luiz Gustavo Nascentes. Modelo para geração de séries sintéticas de dados climáticos. 2004. 155 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Viçosa, Viçosa. 2004. |
dc.identifier.uri.fl_str_mv |
http://www.locus.ufv.br/handle/123456789/9699 |
identifier_str_mv |
BAENA, Luiz Gustavo Nascentes. Modelo para geração de séries sintéticas de dados climáticos. 2004. 155 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Viçosa, Viçosa. 2004. |
url |
http://www.locus.ufv.br/handle/123456789/9699 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/9699/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/9699/2/license.txt https://locus.ufv.br//bitstream/123456789/9699/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
95589c8dd518b0837ba83c4a16e3e81e 8a4605be74aa9ea9d79846c1fba20a33 2e53b286fe9af5595bcd4a8b457b0077 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213115091648512 |