Choice-Based Conjoint Analysis: um enfoque bayesiano

Detalhes bibliográficos
Autor(a) principal: Barbosa, Eduardo Campana
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://www.locus.ufv.br/handle/123456789/7179
Resumo: A presente dissertação teve como objetivo principal demonstrar um enfoque Bayesiano para a metodologia Choice-Based Conjoint Analysis (CBCA). Apresenta-se no texto uma ampla revisão sobre a CBCA (Capítulo 1), sobre o modelo Logit Multinomial [desenvolvimento do modelo, procedimentos de estimação de parâmetros, probabilidades e razões de escolha (Capítulo 2)] e sobre o enfoque de estimação Bayesiano [distribuição a priori utilizada, aproximação de Laplace para a função de verossimilhança, distribuições a posteriori e detalhes sobre o algoritmo MCMC empregado (Capítulo 3)]. No Capítulo 4 apresenta-se um exemplo hipotético, no intuito de demonstrar os resultados e inferências que podem ser obtidos por meio desta recente abordagem (Bayesiana), sendo também apresentados os resultados do enfoque Frequentista. O tratamento em estudo foi um tipo de refrigerante e avaliou-se o efeito de três fatores (A, B e C) na intenção de compra de 96 consumidores, por meio de dados simulados. As análises estatísticas foram conduzidas no software livre R, cujos scripts encontram-se disponibilizados nos apêndices desta dissertação. Concluiu-se que a abordagem Bayesiana para CBCA apresentou resultados interessantes e satisfatórios, com estimativas similares às Frequentistas e mostrando-se uma alternativa metodológica viável para os estudos de CBCA. Adicionalmente, a abordagem proposta possibilitou ainda ao pesquisador construir intervalos de credibilidade (percentis das distribuições a posteriori) para as probabilidades e razões de escolha, no intuito de comparar estas quantidades ou testar hipóteses sobre estas. Quanto aos resultados práticos, a maior probabilidade de escolha estava associada ao tratamento 4, composto pelo nível do fator A, nível do fator B e nível do fator C.
id UFV_b1aa1598352d8ea66370aab909b8748f
oai_identifier_str oai:locus.ufv.br:123456789/7179
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Nascimento, MoysésSilva, Fabyano Fonseca eDeliza, RosiresBarbosa, Eduardo Campanahttp://lattes.cnpq.br/9324723287486113Silva, Carlos Henrique Osório2016-01-20T10:10:28Z2016-01-20T10:10:28Z2015-02-25BARBOSA, Eduardo Campana. Choice-Based Conjoint Analysis: um enfoque bayesiano. 2015. 102 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.http://www.locus.ufv.br/handle/123456789/7179A presente dissertação teve como objetivo principal demonstrar um enfoque Bayesiano para a metodologia Choice-Based Conjoint Analysis (CBCA). Apresenta-se no texto uma ampla revisão sobre a CBCA (Capítulo 1), sobre o modelo Logit Multinomial [desenvolvimento do modelo, procedimentos de estimação de parâmetros, probabilidades e razões de escolha (Capítulo 2)] e sobre o enfoque de estimação Bayesiano [distribuição a priori utilizada, aproximação de Laplace para a função de verossimilhança, distribuições a posteriori e detalhes sobre o algoritmo MCMC empregado (Capítulo 3)]. No Capítulo 4 apresenta-se um exemplo hipotético, no intuito de demonstrar os resultados e inferências que podem ser obtidos por meio desta recente abordagem (Bayesiana), sendo também apresentados os resultados do enfoque Frequentista. O tratamento em estudo foi um tipo de refrigerante e avaliou-se o efeito de três fatores (A, B e C) na intenção de compra de 96 consumidores, por meio de dados simulados. As análises estatísticas foram conduzidas no software livre R, cujos scripts encontram-se disponibilizados nos apêndices desta dissertação. Concluiu-se que a abordagem Bayesiana para CBCA apresentou resultados interessantes e satisfatórios, com estimativas similares às Frequentistas e mostrando-se uma alternativa metodológica viável para os estudos de CBCA. Adicionalmente, a abordagem proposta possibilitou ainda ao pesquisador construir intervalos de credibilidade (percentis das distribuições a posteriori) para as probabilidades e razões de escolha, no intuito de comparar estas quantidades ou testar hipóteses sobre estas. Quanto aos resultados práticos, a maior probabilidade de escolha estava associada ao tratamento 4, composto pelo nível do fator A, nível do fator B e nível do fator C.This dissertation main goal is to demonstrate the Bayesian approach to Choice-Based Conjoint Analysis (CBCA). We present a comprehensive review of the CBCA methodology (Chapter 1), on the Multinomial Logit model [model development, parameter estimation procedures, probabilities of choice ratios (Chapter 2)] and on the Bayesian estimation approach [prior distribution, Laplace approach to the likelihood function, posterior distributions and details about the MCMC algorithm we applied (Chapter 3)]. In Chapter 4 we present a hypothetical example, in order to demonstrate the results and inferences that can be obtained through this recent approach (Bayesian), and we also present the results of the frequentist approach. The treatment for the study was a type of refrigerant (soda or soft drink) and we evaluated the effect of three factors (volume, type and color) on purchase intention of 96 consumers, using simulated data. Statistical analyzes were conducted with the free software R, whose scripts are provided in the appendices of this dissertation. It was concluded that the Bayesian approach to CBCA presented interesting and satisfactory results, with estimates similar to the frequentist ones, therefore proved to be a viable alternative methodology for CBCA studies. Additionally, the proposed approach also allows the researcher to build credibile intervals (percentiles of the posterior distributions) for the probabilities and choice ratios, in order to compare these quantities or test hypotheses about them. In terms of practical or applied results, the highest estimated probability of choice was obtained for treatment 4, with a1 level of factor A, b2 level of factor B and C1 level of factor C.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaInferência BayesianaConsumidores - PreferênciaMarketingProbabilidadeCiências AgráriasChoice-Based Conjoint Analysis: um enfoque bayesianoChoice-Based Conjoint Analysis: a bayesian approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de EstatísticaMestre em Estatística Aplicada e BiometriaViçosa - MG2015-02-25Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf868133https://locus.ufv.br//bitstream/123456789/7179/1/texto%20completo.pdffc299d68c5ac708f6318353d62153283MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/7179/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain191311https://locus.ufv.br//bitstream/123456789/7179/3/texto%20completo.pdf.txt1435e85c31ab775d65aacc122134568cMD53THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3532https://locus.ufv.br//bitstream/123456789/7179/4/texto%20completo.pdf.jpg1eb52d30ea371e56864adb98b543408aMD54123456789/71792016-04-11 23:18:33.379oai:locus.ufv.br:123456789/7179Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-12T02:18:33LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Choice-Based Conjoint Analysis: um enfoque bayesiano
dc.title.en.fl_str_mv Choice-Based Conjoint Analysis: a bayesian approach
title Choice-Based Conjoint Analysis: um enfoque bayesiano
spellingShingle Choice-Based Conjoint Analysis: um enfoque bayesiano
Barbosa, Eduardo Campana
Inferência Bayesiana
Consumidores - Preferência
Marketing
Probabilidade
Ciências Agrárias
title_short Choice-Based Conjoint Analysis: um enfoque bayesiano
title_full Choice-Based Conjoint Analysis: um enfoque bayesiano
title_fullStr Choice-Based Conjoint Analysis: um enfoque bayesiano
title_full_unstemmed Choice-Based Conjoint Analysis: um enfoque bayesiano
title_sort Choice-Based Conjoint Analysis: um enfoque bayesiano
author Barbosa, Eduardo Campana
author_facet Barbosa, Eduardo Campana
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/9324723287486113
dc.contributor.none.fl_str_mv Nascimento, Moysés
Silva, Fabyano Fonseca e
Deliza, Rosires
dc.contributor.author.fl_str_mv Barbosa, Eduardo Campana
dc.contributor.advisor1.fl_str_mv Silva, Carlos Henrique Osório
contributor_str_mv Silva, Carlos Henrique Osório
dc.subject.pt-BR.fl_str_mv Inferência Bayesiana
Consumidores - Preferência
Marketing
Probabilidade
topic Inferência Bayesiana
Consumidores - Preferência
Marketing
Probabilidade
Ciências Agrárias
dc.subject.cnpq.fl_str_mv Ciências Agrárias
description A presente dissertação teve como objetivo principal demonstrar um enfoque Bayesiano para a metodologia Choice-Based Conjoint Analysis (CBCA). Apresenta-se no texto uma ampla revisão sobre a CBCA (Capítulo 1), sobre o modelo Logit Multinomial [desenvolvimento do modelo, procedimentos de estimação de parâmetros, probabilidades e razões de escolha (Capítulo 2)] e sobre o enfoque de estimação Bayesiano [distribuição a priori utilizada, aproximação de Laplace para a função de verossimilhança, distribuições a posteriori e detalhes sobre o algoritmo MCMC empregado (Capítulo 3)]. No Capítulo 4 apresenta-se um exemplo hipotético, no intuito de demonstrar os resultados e inferências que podem ser obtidos por meio desta recente abordagem (Bayesiana), sendo também apresentados os resultados do enfoque Frequentista. O tratamento em estudo foi um tipo de refrigerante e avaliou-se o efeito de três fatores (A, B e C) na intenção de compra de 96 consumidores, por meio de dados simulados. As análises estatísticas foram conduzidas no software livre R, cujos scripts encontram-se disponibilizados nos apêndices desta dissertação. Concluiu-se que a abordagem Bayesiana para CBCA apresentou resultados interessantes e satisfatórios, com estimativas similares às Frequentistas e mostrando-se uma alternativa metodológica viável para os estudos de CBCA. Adicionalmente, a abordagem proposta possibilitou ainda ao pesquisador construir intervalos de credibilidade (percentis das distribuições a posteriori) para as probabilidades e razões de escolha, no intuito de comparar estas quantidades ou testar hipóteses sobre estas. Quanto aos resultados práticos, a maior probabilidade de escolha estava associada ao tratamento 4, composto pelo nível do fator A, nível do fator B e nível do fator C.
publishDate 2015
dc.date.issued.fl_str_mv 2015-02-25
dc.date.accessioned.fl_str_mv 2016-01-20T10:10:28Z
dc.date.available.fl_str_mv 2016-01-20T10:10:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARBOSA, Eduardo Campana. Choice-Based Conjoint Analysis: um enfoque bayesiano. 2015. 102 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/7179
identifier_str_mv BARBOSA, Eduardo Campana. Choice-Based Conjoint Analysis: um enfoque bayesiano. 2015. 102 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2015.
url http://www.locus.ufv.br/handle/123456789/7179
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/7179/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/7179/2/license.txt
https://locus.ufv.br//bitstream/123456789/7179/3/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/7179/4/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv fc299d68c5ac708f6318353d62153283
8a4605be74aa9ea9d79846c1fba20a33
1435e85c31ab775d65aacc122134568c
1eb52d30ea371e56864adb98b543408a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213123589308416