Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.plaphy.2017.02.003 http://www.locus.ufv.br/handle/123456789/19603 |
Resumo: | We studied resistance to manganese (Mn) toxicity under acidic conditions and its relationship with nutrients such as calcium (Ca) and magnesium (Mg) in new perennial ryegrass (Lolium perenne L.) genotypes (One-50, Banquet-II and Halo-AR1) introduced in southern Chile, using the Nui genotype as the reference. Plants were grown in nutrient solution at increased Mn concentrations (0–750 μM) at pH 4.8, and physiological and biochemical features were determined. Under higher Mn concentration, the One-50 genotype had a significantly lower relative growth rate (RGR) of shoots and roots, whereas in the other cultivars this parameter did not change under variable Mn treatments. Increasing the Mn concentration led to an increased Mn concentration in roots and shoots, with Banquet-II and Halo-AR1 having higher Mn in roots than shoots. Shoot Mg and Ca concentrations in all genotypes (except Banquet-II) decreased concomitantly with increasing Mn applications. In contrast to the other genotypes, Banquet-II and Halo-AR1 maintained their net CO2 assimilation rate regardless of Mn treatment, whereas the chlorophyll concentration decreased in all genotypes with the exception of Banquet-II. In addition, lipid peroxidation in Banquet-II roots increased at 150 μM Mn, but decreased at higher Mn concentrations. This decrease was associated with an increase in antioxidant capacity as well as total phenol concentration. Banquet-II and Halo-AR1 appear to be the most Mn-resistant genotypes based on RGR and CO2 assimilation rate. In addition, Mn excess provoked a strong decrease in Ca and Mg concentrations in shoots of the Mn-sensitive genotype, whereas only slight variations in the Mn-resistant genotype were noted. When other evaluated parameters were taken into account, we concluded that among the perennial ryegrass genotypes introduced recently into southern Chile Banquet-II appears to be the most Mn-resistant, followed by Halo-AR1, with One-50 being the most sensitive. |
id |
UFV_d286cf520cd1db65283757efbd6ba250 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/19603 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Rodrigues-Salvador, AcácioInostroza-Blancheteau, ClaudioReyes-Díaz, MarjorieBerríos, GracielaNunes-Nesi, AdrianoDeppe, MarianaDemanet, RolandoRengel, ZedAlberdi, Miren2018-05-16T12:09:12Z2018-05-16T12:09:12Z2017-02-0309819428https://doi.org/10.1016/j.plaphy.2017.02.003http://www.locus.ufv.br/handle/123456789/19603We studied resistance to manganese (Mn) toxicity under acidic conditions and its relationship with nutrients such as calcium (Ca) and magnesium (Mg) in new perennial ryegrass (Lolium perenne L.) genotypes (One-50, Banquet-II and Halo-AR1) introduced in southern Chile, using the Nui genotype as the reference. Plants were grown in nutrient solution at increased Mn concentrations (0–750 μM) at pH 4.8, and physiological and biochemical features were determined. Under higher Mn concentration, the One-50 genotype had a significantly lower relative growth rate (RGR) of shoots and roots, whereas in the other cultivars this parameter did not change under variable Mn treatments. Increasing the Mn concentration led to an increased Mn concentration in roots and shoots, with Banquet-II and Halo-AR1 having higher Mn in roots than shoots. Shoot Mg and Ca concentrations in all genotypes (except Banquet-II) decreased concomitantly with increasing Mn applications. In contrast to the other genotypes, Banquet-II and Halo-AR1 maintained their net CO2 assimilation rate regardless of Mn treatment, whereas the chlorophyll concentration decreased in all genotypes with the exception of Banquet-II. In addition, lipid peroxidation in Banquet-II roots increased at 150 μM Mn, but decreased at higher Mn concentrations. This decrease was associated with an increase in antioxidant capacity as well as total phenol concentration. Banquet-II and Halo-AR1 appear to be the most Mn-resistant genotypes based on RGR and CO2 assimilation rate. In addition, Mn excess provoked a strong decrease in Ca and Mg concentrations in shoots of the Mn-sensitive genotype, whereas only slight variations in the Mn-resistant genotype were noted. When other evaluated parameters were taken into account, we concluded that among the perennial ryegrass genotypes introduced recently into southern Chile Banquet-II appears to be the most Mn-resistant, followed by Halo-AR1, with One-50 being the most sensitive.engPlant Physiology and Biochemistryv. 113, p. 89-97, Abril 2017Elsevier Masson SAS.info:eu-repo/semantics/openAccessAntioxidant capacityMn resistanceOxidative stressPhotosynthesisRyegrassPhysiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1910043https://locus.ufv.br//bitstream/123456789/19603/1/artigo.pdf43b903fcb71e7dc134a1981cdb3d7eacMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19603/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5347https://locus.ufv.br//bitstream/123456789/19603/3/artigo.pdf.jpg73c63c180b303b9ad572290ec361b79cMD53123456789/196032018-05-16 23:01:01.995oai:locus.ufv.br:123456789/19603Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-05-17T02:01:01LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
title |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
spellingShingle |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes Rodrigues-Salvador, Acácio Antioxidant capacity Mn resistance Oxidative stress Photosynthesis Ryegrass |
title_short |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
title_full |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
title_fullStr |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
title_full_unstemmed |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
title_sort |
Physiological and biochemical responses to manganese toxicity in ryegrass (Lolium perenne L.) genotypes |
author |
Rodrigues-Salvador, Acácio |
author_facet |
Rodrigues-Salvador, Acácio Inostroza-Blancheteau, Claudio Reyes-Díaz, Marjorie Berríos, Graciela Nunes-Nesi, Adriano Deppe, Mariana Demanet, Rolando Rengel, Zed Alberdi, Miren |
author_role |
author |
author2 |
Inostroza-Blancheteau, Claudio Reyes-Díaz, Marjorie Berríos, Graciela Nunes-Nesi, Adriano Deppe, Mariana Demanet, Rolando Rengel, Zed Alberdi, Miren |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Rodrigues-Salvador, Acácio Inostroza-Blancheteau, Claudio Reyes-Díaz, Marjorie Berríos, Graciela Nunes-Nesi, Adriano Deppe, Mariana Demanet, Rolando Rengel, Zed Alberdi, Miren |
dc.subject.pt-BR.fl_str_mv |
Antioxidant capacity Mn resistance Oxidative stress Photosynthesis Ryegrass |
topic |
Antioxidant capacity Mn resistance Oxidative stress Photosynthesis Ryegrass |
description |
We studied resistance to manganese (Mn) toxicity under acidic conditions and its relationship with nutrients such as calcium (Ca) and magnesium (Mg) in new perennial ryegrass (Lolium perenne L.) genotypes (One-50, Banquet-II and Halo-AR1) introduced in southern Chile, using the Nui genotype as the reference. Plants were grown in nutrient solution at increased Mn concentrations (0–750 μM) at pH 4.8, and physiological and biochemical features were determined. Under higher Mn concentration, the One-50 genotype had a significantly lower relative growth rate (RGR) of shoots and roots, whereas in the other cultivars this parameter did not change under variable Mn treatments. Increasing the Mn concentration led to an increased Mn concentration in roots and shoots, with Banquet-II and Halo-AR1 having higher Mn in roots than shoots. Shoot Mg and Ca concentrations in all genotypes (except Banquet-II) decreased concomitantly with increasing Mn applications. In contrast to the other genotypes, Banquet-II and Halo-AR1 maintained their net CO2 assimilation rate regardless of Mn treatment, whereas the chlorophyll concentration decreased in all genotypes with the exception of Banquet-II. In addition, lipid peroxidation in Banquet-II roots increased at 150 μM Mn, but decreased at higher Mn concentrations. This decrease was associated with an increase in antioxidant capacity as well as total phenol concentration. Banquet-II and Halo-AR1 appear to be the most Mn-resistant genotypes based on RGR and CO2 assimilation rate. In addition, Mn excess provoked a strong decrease in Ca and Mg concentrations in shoots of the Mn-sensitive genotype, whereas only slight variations in the Mn-resistant genotype were noted. When other evaluated parameters were taken into account, we concluded that among the perennial ryegrass genotypes introduced recently into southern Chile Banquet-II appears to be the most Mn-resistant, followed by Halo-AR1, with One-50 being the most sensitive. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-02-03 |
dc.date.accessioned.fl_str_mv |
2018-05-16T12:09:12Z |
dc.date.available.fl_str_mv |
2018-05-16T12:09:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.plaphy.2017.02.003 http://www.locus.ufv.br/handle/123456789/19603 |
dc.identifier.issn.none.fl_str_mv |
09819428 |
identifier_str_mv |
09819428 |
url |
https://doi.org/10.1016/j.plaphy.2017.02.003 http://www.locus.ufv.br/handle/123456789/19603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 113, p. 89-97, Abril 2017 |
dc.rights.driver.fl_str_mv |
Elsevier Masson SAS. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier Masson SAS. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Plant Physiology and Biochemistry |
publisher.none.fl_str_mv |
Plant Physiology and Biochemistry |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/19603/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/19603/2/license.txt https://locus.ufv.br//bitstream/123456789/19603/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
43b903fcb71e7dc134a1981cdb3d7eac 8a4605be74aa9ea9d79846c1fba20a33 73c63c180b303b9ad572290ec361b79c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213040642752512 |