The role of amino acid metabolism during abiotic stress release

Detalhes bibliográficos
Autor(a) principal: Batista‐ Silva, Willian
Data de Publicação: 2019
Outros Autores: Heinemann, Björn, Rugen, Nils, Nunes‐ Nesi, Adriano, Araújo, Wagner L., Braun, Hans‐ Peter, Hildebrandt, Tatjana M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1111/pce.13518
http://www.locus.ufv.br/handle/123456789/24265
Resumo: Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up‐regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.
id UFV_dc3e083b81500cfa2ca67c6ee3915464
oai_identifier_str oai:locus.ufv.br:123456789/24265
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Batista‐ Silva, WillianHeinemann, BjörnRugen, NilsNunes‐ Nesi, AdrianoAraújo, Wagner L.Braun, Hans‐ PeterHildebrandt, Tatjana M.2019-04-02T13:09:37Z2019-04-02T13:09:37Z20191365-3040http://dx.doi.org/10.1111/pce.13518http://www.locus.ufv.br/handle/123456789/24265Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up‐regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.engPlant, Cell & EnvironmentPages 1- 15, 2019Arabidopsis thalianaDroughtHydroponic cultureProteomicsSalinityThe role of amino acid metabolism during abiotic stress releaseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1414345https://locus.ufv.br//bitstream/123456789/24265/1/artigo.pdf0ebdf77970adaa4ed69a24752010ca2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/24265/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/242652019-04-02 10:12:43.481oai:locus.ufv.br:123456789/24265Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-04-02T13:12:43LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv The role of amino acid metabolism during abiotic stress release
title The role of amino acid metabolism during abiotic stress release
spellingShingle The role of amino acid metabolism during abiotic stress release
Batista‐ Silva, Willian
Arabidopsis thaliana
Drought
Hydroponic culture
Proteomics
Salinity
title_short The role of amino acid metabolism during abiotic stress release
title_full The role of amino acid metabolism during abiotic stress release
title_fullStr The role of amino acid metabolism during abiotic stress release
title_full_unstemmed The role of amino acid metabolism during abiotic stress release
title_sort The role of amino acid metabolism during abiotic stress release
author Batista‐ Silva, Willian
author_facet Batista‐ Silva, Willian
Heinemann, Björn
Rugen, Nils
Nunes‐ Nesi, Adriano
Araújo, Wagner L.
Braun, Hans‐ Peter
Hildebrandt, Tatjana M.
author_role author
author2 Heinemann, Björn
Rugen, Nils
Nunes‐ Nesi, Adriano
Araújo, Wagner L.
Braun, Hans‐ Peter
Hildebrandt, Tatjana M.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Batista‐ Silva, Willian
Heinemann, Björn
Rugen, Nils
Nunes‐ Nesi, Adriano
Araújo, Wagner L.
Braun, Hans‐ Peter
Hildebrandt, Tatjana M.
dc.subject.pt-BR.fl_str_mv Arabidopsis thaliana
Drought
Hydroponic culture
Proteomics
Salinity
topic Arabidopsis thaliana
Drought
Hydroponic culture
Proteomics
Salinity
description Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up‐regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-04-02T13:09:37Z
dc.date.available.fl_str_mv 2019-04-02T13:09:37Z
dc.date.issued.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1111/pce.13518
http://www.locus.ufv.br/handle/123456789/24265
dc.identifier.issn.none.fl_str_mv 1365-3040
identifier_str_mv 1365-3040
url http://dx.doi.org/10.1111/pce.13518
http://www.locus.ufv.br/handle/123456789/24265
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Pages 1- 15, 2019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Plant, Cell & Environment
publisher.none.fl_str_mv Plant, Cell & Environment
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/24265/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/24265/2/license.txt
bitstream.checksum.fl_str_mv 0ebdf77970adaa4ed69a24752010ca2c
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213117930143744