Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/2055 |
Resumo: | O propósito deste trabalho é a caracterização das amostras de açúcar mascavo claro (DPC) e escuro (DPE) provenientes da região de Cataguases, pela Indústria Doce Puxa-Puxa, determinando-se as principais associações destas, bem como expressar os índices de correlação entre as mesmas, baseado nos dados de espectros no infravermelho próximo, medidas analíticas e de métodos quimiométricos utilizando análise das componentes principais, que é uma técnica de análise multivariada. Os espectros de refletância difusa na região do infravermelho próximo foram obtidos usando um espectrofotômetro NIR System 6500 (Silver Spring, MD, USA) utilizando célula coarse e região de espectro de 1000 a 2500 nm, com incremento de 2nm. Para a determinação das concentrações dos metais ( Cu, Ca, Na, Fe, Mg) foi utilizado o espectrofotômetro de absorção atômica da VARIAN, modelo SpectrAA-200. Para a determinação do teor de sacarose utilizou uma técnica de Cromatografia Líquida de Alta Eficiência com um detector de Índice de Refração da marca Shimadzu, modelo RID 10A. Os dados foram transferidos para o ambiente Matlab 5.3. Neste ambiente, os espectros serão pré-processados centrando na média. Em seguida o método da Análise das Componentes Principais ( Principal Component Analysis - PCA) será utilizado para verificar a separação das amostras de açúcar mascavo. A análise de componentes principais evidenciou as características comuns e discrepantes entre os diferentes açúcares mascavos. Na disposição dos dados dos espectros na PCA é possível observar que a primeira componente principal (PC1) explica 93,60 % da variância total dos dados, observa-se que existe a separação entre o grupo do açúcar mascavo claro (DPC) e o grupo do açúcar mascavo escuro (DPE), na primeira componente principal. Foram aplicadas a PCA à matriz de dados gerados (97 x 5) com os resultados das concentrações dos metais. O pré processamento usado foi o auto-escalonamento, onde mostrou que a primeira componente principal (PC1) explica 56,24 % da variância total dos dados, sendo que a segunda componente principal (PC2) explica 27,27 %, respectivamente. É interessante notar que as diferentes amostras, foram agrupadas entre si, de acordo com as diferenças nas concentrações dos metais encontrados. |
id |
UFV_f5e7936f4d75e2db93d3421a9ecd49a4 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/2055 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricosCharacterization of brown sugar applying analysis of the main components the spectrometric dataQuímica analíticaAnálise de componentes principaisEspectrometria de infravermelho por reflectânciaCromatografia a líquido de alta eficiênciaAçúcar mascavoAnálise multivariadaAnalytical chemistryAnalysis of the main componentsInfra-red reflectance spectrometryLiquid chromatography of high efficiencyBrown sugarMultivariate analysisCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICAO propósito deste trabalho é a caracterização das amostras de açúcar mascavo claro (DPC) e escuro (DPE) provenientes da região de Cataguases, pela Indústria Doce Puxa-Puxa, determinando-se as principais associações destas, bem como expressar os índices de correlação entre as mesmas, baseado nos dados de espectros no infravermelho próximo, medidas analíticas e de métodos quimiométricos utilizando análise das componentes principais, que é uma técnica de análise multivariada. Os espectros de refletância difusa na região do infravermelho próximo foram obtidos usando um espectrofotômetro NIR System 6500 (Silver Spring, MD, USA) utilizando célula coarse e região de espectro de 1000 a 2500 nm, com incremento de 2nm. Para a determinação das concentrações dos metais ( Cu, Ca, Na, Fe, Mg) foi utilizado o espectrofotômetro de absorção atômica da VARIAN, modelo SpectrAA-200. Para a determinação do teor de sacarose utilizou uma técnica de Cromatografia Líquida de Alta Eficiência com um detector de Índice de Refração da marca Shimadzu, modelo RID 10A. Os dados foram transferidos para o ambiente Matlab 5.3. Neste ambiente, os espectros serão pré-processados centrando na média. Em seguida o método da Análise das Componentes Principais ( Principal Component Analysis - PCA) será utilizado para verificar a separação das amostras de açúcar mascavo. A análise de componentes principais evidenciou as características comuns e discrepantes entre os diferentes açúcares mascavos. Na disposição dos dados dos espectros na PCA é possível observar que a primeira componente principal (PC1) explica 93,60 % da variância total dos dados, observa-se que existe a separação entre o grupo do açúcar mascavo claro (DPC) e o grupo do açúcar mascavo escuro (DPE), na primeira componente principal. Foram aplicadas a PCA à matriz de dados gerados (97 x 5) com os resultados das concentrações dos metais. O pré processamento usado foi o auto-escalonamento, onde mostrou que a primeira componente principal (PC1) explica 56,24 % da variância total dos dados, sendo que a segunda componente principal (PC2) explica 27,27 %, respectivamente. É interessante notar que as diferentes amostras, foram agrupadas entre si, de acordo com as diferenças nas concentrações dos metais encontrados.The purpose of this work is the characterization of the samples of brown sugar, clear (DPC) and dark (DPE), from the region of Cataguases, for the Puxa-Puxa Candy Industry, determining the main associations of these, as well as expressing the indices of correlation between the same ones, based in the data of specters in the next infra-red ray, measures analytical and of chemiometric methods using analysis of the main components, that is one of the many techniques of analysis. The diffuse reflectance specters in the region of the next infra-red ray had been using a spectrophotometer NIR System 6500 (Silver Spring, MD, the USA) using cell coarse and region of the 2500 specter of 1000 nm, with increment of 2nm. For the determination of the concentrations of metals (Cu, Ca, In, Fe, Mg) atomic absorption of the VARIAN spectrophotometer, SpectrAA-200 model was used. For the determination of the text of sacarose it used a technique of Liquid Chromatography of High Efficiency with a detector of Refractive index of the Shimadzu mark, model RID - 10A. The data has been transferred to the environment Matlab 5.3. In this environment, the specters will be daily pay-processed centering in the average. After that the method of the Main Component Analysis (PCA) will be used to certify the separation of the samples of brown sugar. The main components analysis turned evident the common and discrepant characteristics between the different brown sugar. In the disposal of the data of the specters in the PCA it is possible to observe that the first main component (PC1) explains 93,60 % of the total variance of the data, it was observed that the separation exists clearly entering the group of brown sugar (DPC) and the group of the dark brown sugar (DPE), in the first main component. The PCA to the matrix of data generated (97 x 5) with the results of the concentrations of metals had been applied. The daily pay - used processing was the auto-scheduling, where it showed respectively that the first main component (PC1) explains 56,24 % of the total variance of the data, being that the second main component (PC2) explains 27,27 %. It is interesting to notice that the different samples have been grouped between itself, in accordance with the differences in the concentrations of joined metals.Universidade Federal de ViçosaBRAgroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânicaMestrado em AgroquímicaUFVhttp://lattes.cnpq.br/9391167818186288Reis, Efraim Lázarohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788214H7Reis, Césarhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785327P6Fidencio, Paulo Henriquehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728400E4Neves, Antônio Augustohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788868U1Milagres, Benjamin Gonçalveshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4767834T1Natalino, Ricardo2015-03-26T13:00:08Z2006-12-122015-03-26T13:00:08Z2006-04-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfNATALINO, Ricardo. Characterization of brown sugar applying analysis of the main components the spectrometric data. 2006. 52 f. Dissertação (Mestrado em Agroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânica) - Universidade Federal de Viçosa, Viçosa, 2006.http://locus.ufv.br/handle/123456789/2055porinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2016-04-08T02:17:22Zoai:locus.ufv.br:123456789/2055Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-08T02:17:22LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos Characterization of brown sugar applying analysis of the main components the spectrometric data |
title |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos |
spellingShingle |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos Natalino, Ricardo Química analítica Análise de componentes principais Espectrometria de infravermelho por reflectância Cromatografia a líquido de alta eficiência Açúcar mascavo Análise multivariada Analytical chemistry Analysis of the main components Infra-red reflectance spectrometry Liquid chromatography of high efficiency Brown sugar Multivariate analysis CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA |
title_short |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos |
title_full |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos |
title_fullStr |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos |
title_full_unstemmed |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos |
title_sort |
Caracterização de açúcar mascavo aplicando análise das componentes principais a dados espectrométricos |
author |
Natalino, Ricardo |
author_facet |
Natalino, Ricardo |
author_role |
author |
dc.contributor.none.fl_str_mv |
http://lattes.cnpq.br/9391167818186288 Reis, Efraim Lázaro http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788214H7 Reis, César http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785327P6 Fidencio, Paulo Henrique http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728400E4 Neves, Antônio Augusto http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788868U1 Milagres, Benjamin Gonçalves http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4767834T1 |
dc.contributor.author.fl_str_mv |
Natalino, Ricardo |
dc.subject.por.fl_str_mv |
Química analítica Análise de componentes principais Espectrometria de infravermelho por reflectância Cromatografia a líquido de alta eficiência Açúcar mascavo Análise multivariada Analytical chemistry Analysis of the main components Infra-red reflectance spectrometry Liquid chromatography of high efficiency Brown sugar Multivariate analysis CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA |
topic |
Química analítica Análise de componentes principais Espectrometria de infravermelho por reflectância Cromatografia a líquido de alta eficiência Açúcar mascavo Análise multivariada Analytical chemistry Analysis of the main components Infra-red reflectance spectrometry Liquid chromatography of high efficiency Brown sugar Multivariate analysis CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ANALITICA |
description |
O propósito deste trabalho é a caracterização das amostras de açúcar mascavo claro (DPC) e escuro (DPE) provenientes da região de Cataguases, pela Indústria Doce Puxa-Puxa, determinando-se as principais associações destas, bem como expressar os índices de correlação entre as mesmas, baseado nos dados de espectros no infravermelho próximo, medidas analíticas e de métodos quimiométricos utilizando análise das componentes principais, que é uma técnica de análise multivariada. Os espectros de refletância difusa na região do infravermelho próximo foram obtidos usando um espectrofotômetro NIR System 6500 (Silver Spring, MD, USA) utilizando célula coarse e região de espectro de 1000 a 2500 nm, com incremento de 2nm. Para a determinação das concentrações dos metais ( Cu, Ca, Na, Fe, Mg) foi utilizado o espectrofotômetro de absorção atômica da VARIAN, modelo SpectrAA-200. Para a determinação do teor de sacarose utilizou uma técnica de Cromatografia Líquida de Alta Eficiência com um detector de Índice de Refração da marca Shimadzu, modelo RID 10A. Os dados foram transferidos para o ambiente Matlab 5.3. Neste ambiente, os espectros serão pré-processados centrando na média. Em seguida o método da Análise das Componentes Principais ( Principal Component Analysis - PCA) será utilizado para verificar a separação das amostras de açúcar mascavo. A análise de componentes principais evidenciou as características comuns e discrepantes entre os diferentes açúcares mascavos. Na disposição dos dados dos espectros na PCA é possível observar que a primeira componente principal (PC1) explica 93,60 % da variância total dos dados, observa-se que existe a separação entre o grupo do açúcar mascavo claro (DPC) e o grupo do açúcar mascavo escuro (DPE), na primeira componente principal. Foram aplicadas a PCA à matriz de dados gerados (97 x 5) com os resultados das concentrações dos metais. O pré processamento usado foi o auto-escalonamento, onde mostrou que a primeira componente principal (PC1) explica 56,24 % da variância total dos dados, sendo que a segunda componente principal (PC2) explica 27,27 %, respectivamente. É interessante notar que as diferentes amostras, foram agrupadas entre si, de acordo com as diferenças nas concentrações dos metais encontrados. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12-12 2006-04-28 2015-03-26T13:00:08Z 2015-03-26T13:00:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
NATALINO, Ricardo. Characterization of brown sugar applying analysis of the main components the spectrometric data. 2006. 52 f. Dissertação (Mestrado em Agroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânica) - Universidade Federal de Viçosa, Viçosa, 2006. http://locus.ufv.br/handle/123456789/2055 |
identifier_str_mv |
NATALINO, Ricardo. Characterization of brown sugar applying analysis of the main components the spectrometric data. 2006. 52 f. Dissertação (Mestrado em Agroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânica) - Universidade Federal de Viçosa, Viçosa, 2006. |
url |
http://locus.ufv.br/handle/123456789/2055 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa BR Agroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânica Mestrado em Agroquímica UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa BR Agroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânica Mestrado em Agroquímica UFV |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1822610575937503232 |