O acoplamento indutivo com bobinas On-Chip

Detalhes bibliográficos
Autor(a) principal: Soares, Jaqueline dos Santos
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/4268
Resumo: The quantum Hall effect (QHE) remains the target of an immense research effort twenty six years after its discovery. In fact this phenomenon has been a source of fundamental questions. Among the open problems in the field is the spatial distribution of the electric current in the quantum Hall effect. This question has been in debate since its discovery. Some experimental and theoretical results indicate the Hall current is distributed uniformly across the width of a Hall bar. Contradictorily, other results suggest the current flows mostly in a narrow region along the device s edges. Prominent works by Yahel et al. [PRL 76, 2149 (1996) and PRL 81, 5201 (1998)] shed new lights on the subject by using an experimental technique that came to known as inductive coupling . This method is based on the measurement of the nanovoltage signal induced by an alternating Hall current in a compact coil, carefully positioned above one edge of a Hall bar. It is perhaps the least invasive method available to study the current distribution in the QHE. It remained nonetheless a challenging experiment, as regards the positioning and making of the coil and the measurement of the minute induced voltage. We showed with calculations that it is possible to greatly simplify the aforementioned technique and make it more sensitive and useful by fabricating the coil on the chip containing the Hall bar. The concept was tested experimentally replacing the semiconductor Hall bar with a metal strip whose current distribution is known to be uniform from the electrodynamics. The voltage induced by the current in the metal strip in a nearby coil fits was measured. It fits in precisely, in magnitude and phase, with the values calculated. As our most important contribution, we found out that the presence of a two dimensional electron gas (2DEG), located 200 nm underneath the coil, increases the induced signal by thirty times. The magnitude and phase of the signal indicate it comes mostly from the current induced in the 2DEG by the alternating Hall current. This amplification effect renders a stronger signal with a sample containing a milimetric size Hall bar and a coil with ten turns, conveniently fabricated by simple optical lithography, than the signal measured by Yahel, using a ten times larger Hall bar and a handcrafted coil with 3,000 turns. We speculate that the effect of the 2DEG shall allow the use of our technique to map the current distribution in the QHE and also to study nanoscopic magnetic systems.
id UFV_f9c6a3b17a37e764dd3de61e847d4d1d
oai_identifier_str oai:locus.ufv.br:123456789/4268
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Soares, Jaqueline dos Santoshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4772708Y6Moreira, Helder Soareshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784865J8Neves, álvaro José Magalhãeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781784D2Martins, Marcelo Lobatohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789678A0Krambrock, Klaus Wilhelm Heinrichhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760338D2Matinaga, Franklin Massamihttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786917J12015-03-26T13:35:22Z2007-07-232015-03-26T13:35:22Z2007-02-26SOARES, Jaqueline dos Santos. The inductive coupling with On-Chip coils. 2007. 110 f. Dissertação (Mestrado em Física Teórica e Computacional; Preparação e Caracterização de Materiais; Sensores e Dispositivos.) - Universidade Federal de Viçosa, Viçosa, 2007.http://locus.ufv.br/handle/123456789/4268The quantum Hall effect (QHE) remains the target of an immense research effort twenty six years after its discovery. In fact this phenomenon has been a source of fundamental questions. Among the open problems in the field is the spatial distribution of the electric current in the quantum Hall effect. This question has been in debate since its discovery. Some experimental and theoretical results indicate the Hall current is distributed uniformly across the width of a Hall bar. Contradictorily, other results suggest the current flows mostly in a narrow region along the device s edges. Prominent works by Yahel et al. [PRL 76, 2149 (1996) and PRL 81, 5201 (1998)] shed new lights on the subject by using an experimental technique that came to known as inductive coupling . This method is based on the measurement of the nanovoltage signal induced by an alternating Hall current in a compact coil, carefully positioned above one edge of a Hall bar. It is perhaps the least invasive method available to study the current distribution in the QHE. It remained nonetheless a challenging experiment, as regards the positioning and making of the coil and the measurement of the minute induced voltage. We showed with calculations that it is possible to greatly simplify the aforementioned technique and make it more sensitive and useful by fabricating the coil on the chip containing the Hall bar. The concept was tested experimentally replacing the semiconductor Hall bar with a metal strip whose current distribution is known to be uniform from the electrodynamics. The voltage induced by the current in the metal strip in a nearby coil fits was measured. It fits in precisely, in magnitude and phase, with the values calculated. As our most important contribution, we found out that the presence of a two dimensional electron gas (2DEG), located 200 nm underneath the coil, increases the induced signal by thirty times. The magnitude and phase of the signal indicate it comes mostly from the current induced in the 2DEG by the alternating Hall current. This amplification effect renders a stronger signal with a sample containing a milimetric size Hall bar and a coil with ten turns, conveniently fabricated by simple optical lithography, than the signal measured by Yahel, using a ten times larger Hall bar and a handcrafted coil with 3,000 turns. We speculate that the effect of the 2DEG shall allow the use of our technique to map the current distribution in the QHE and also to study nanoscopic magnetic systems.O efeito Hall quântico (EHQ) permanece como foco de um imenso esforço de pesquisa vinte e seis anos após sua descoberta. De fato este fenômeno tem levantado uma série de questões fundamentais. Entre os problemas em aberto nesse campo está a distribuição espacial de corrente elétrica durante o efeito Hall quântico. Esta questão tem sido continuamente debatida desde a sua descoberta. Alguns experimentos e modelos teóricos indicam que a corrente se distribui uniformemente pela largura da ponte Hall. Contraditoriamente, outros resultados sugerem que a corrente flui predominantemente nas bordas do dispositivo. Trabalhos importantes de Yahel et al. [PRL 76, 2149 (1996) e PRL 81, 5201 (1998)] trouxeram novas pistas sobre o assunto usando a técnica experimental que ficou conhecida como "acoplamento indutivo . O método é baseado na medida da tensão induzida (da ordem de dezenas de nanovolts) por uma corrente Hall alternada em uma bobina compacta, cuidadosamente posicionada acima de uma das bordas da ponte Hall. Ele é talvez o método menos invasivo disponível para estudar a distribuição de corrente no EHQ. Entretanto, trata-se de uma técnica experimentalmente desafiadora no que se refere ao posicionamento e a fabricação da bobina e a medida tênue da tensão induzida. Mostramos com cálculos que é possível simplificar grandemente a técnica mencionada e fazê-la mais sensível e útil fabricando a bobina no mesmo chip da ponte Hall. O conceito foi testado experimentalmente substituindo a ponte Hall semicondutora por uma tira metálica cuja distribuição de corrente é conhecida a priori da eletrodinâmica. Medimos a tensão induzida pela corrente na tira metálica na bobina vizinha. O resultado ajusta-se perfeitamente, em magnitude e fase, aos valores calculados. Como nossa contribuição mais importante, descobrimos que a presença de uma gás bidimensional de elétrons (2DEG), localizado a 200 nm abaixo da bobina, aumenta o sinal induzido por um fator de trinta. A magnitude e a fase do sinal indicam que ele tem origem na corrente induzida no 2DEG pela corrente Hall alternada. O efeito de amplificação fornece um sinal mais forte em uma amostra contendo uma ponte Hall com dimensão milimétrica e com uma bobina com dez voltas, convenientemente fabricada por litografia óptica, do que o sinal medido por Yahel, usando uma ponte Hall dez vezes maior e uma bobina manufaturada com 3000 voltas. Especulamos que o efeito do 2DEG poderá permitir que a nossa técnica seja usada para mapear a distribuição de corrente no EHQ e também no estudo de sistemas magnéticos com dimensões nanométricas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaMestrado em Física AplicadaUFVBRFísica Teórica e Computacional; Preparação e Caracterização de Materiais; Sensores e Dispositivos.Efeito hall quânticoAcoplamento indutivoDistribuição de correnteQuantum Hall effectInductive couplingElectric current distributionCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADAO acoplamento indutivo com bobinas On-Chip The inductive coupling with On-Chip coilsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1377074https://locus.ufv.br//bitstream/123456789/4268/1/texto%20completo.pdf9d0bcaa0daae6ad97072fe3a335f2cadMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain167165https://locus.ufv.br//bitstream/123456789/4268/2/texto%20completo.pdf.txt32f7794528885bf392c5fa5dfc4671fcMD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3535https://locus.ufv.br//bitstream/123456789/4268/3/texto%20completo.pdf.jpg479b75762ead40122034eff546bc8c3bMD53123456789/42682016-04-10 23:05:11.496oai:locus.ufv.br:123456789/4268Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-11T02:05:11LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv O acoplamento indutivo com bobinas On-Chip
dc.title.alternative.eng.fl_str_mv The inductive coupling with On-Chip coils
title O acoplamento indutivo com bobinas On-Chip
spellingShingle O acoplamento indutivo com bobinas On-Chip
Soares, Jaqueline dos Santos
Efeito hall quântico
Acoplamento indutivo
Distribuição de corrente
Quantum Hall effect
Inductive coupling
Electric current distribution
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
title_short O acoplamento indutivo com bobinas On-Chip
title_full O acoplamento indutivo com bobinas On-Chip
title_fullStr O acoplamento indutivo com bobinas On-Chip
title_full_unstemmed O acoplamento indutivo com bobinas On-Chip
title_sort O acoplamento indutivo com bobinas On-Chip
author Soares, Jaqueline dos Santos
author_facet Soares, Jaqueline dos Santos
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4772708Y6
dc.contributor.author.fl_str_mv Soares, Jaqueline dos Santos
dc.contributor.advisor-co1.fl_str_mv Moreira, Helder Soares
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784865J8
dc.contributor.advisor1.fl_str_mv Neves, álvaro José Magalhães
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781784D2
dc.contributor.referee1.fl_str_mv Martins, Marcelo Lobato
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4789678A0
dc.contributor.referee2.fl_str_mv Krambrock, Klaus Wilhelm Heinrich
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760338D2
dc.contributor.referee3.fl_str_mv Matinaga, Franklin Massami
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786917J1
contributor_str_mv Moreira, Helder Soares
Neves, álvaro José Magalhães
Martins, Marcelo Lobato
Krambrock, Klaus Wilhelm Heinrich
Matinaga, Franklin Massami
dc.subject.por.fl_str_mv Efeito hall quântico
Acoplamento indutivo
Distribuição de corrente
topic Efeito hall quântico
Acoplamento indutivo
Distribuição de corrente
Quantum Hall effect
Inductive coupling
Electric current distribution
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
dc.subject.eng.fl_str_mv Quantum Hall effect
Inductive coupling
Electric current distribution
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::FISICA DA MATERIA CONDENSADA
description The quantum Hall effect (QHE) remains the target of an immense research effort twenty six years after its discovery. In fact this phenomenon has been a source of fundamental questions. Among the open problems in the field is the spatial distribution of the electric current in the quantum Hall effect. This question has been in debate since its discovery. Some experimental and theoretical results indicate the Hall current is distributed uniformly across the width of a Hall bar. Contradictorily, other results suggest the current flows mostly in a narrow region along the device s edges. Prominent works by Yahel et al. [PRL 76, 2149 (1996) and PRL 81, 5201 (1998)] shed new lights on the subject by using an experimental technique that came to known as inductive coupling . This method is based on the measurement of the nanovoltage signal induced by an alternating Hall current in a compact coil, carefully positioned above one edge of a Hall bar. It is perhaps the least invasive method available to study the current distribution in the QHE. It remained nonetheless a challenging experiment, as regards the positioning and making of the coil and the measurement of the minute induced voltage. We showed with calculations that it is possible to greatly simplify the aforementioned technique and make it more sensitive and useful by fabricating the coil on the chip containing the Hall bar. The concept was tested experimentally replacing the semiconductor Hall bar with a metal strip whose current distribution is known to be uniform from the electrodynamics. The voltage induced by the current in the metal strip in a nearby coil fits was measured. It fits in precisely, in magnitude and phase, with the values calculated. As our most important contribution, we found out that the presence of a two dimensional electron gas (2DEG), located 200 nm underneath the coil, increases the induced signal by thirty times. The magnitude and phase of the signal indicate it comes mostly from the current induced in the 2DEG by the alternating Hall current. This amplification effect renders a stronger signal with a sample containing a milimetric size Hall bar and a coil with ten turns, conveniently fabricated by simple optical lithography, than the signal measured by Yahel, using a ten times larger Hall bar and a handcrafted coil with 3,000 turns. We speculate that the effect of the 2DEG shall allow the use of our technique to map the current distribution in the QHE and also to study nanoscopic magnetic systems.
publishDate 2007
dc.date.available.fl_str_mv 2007-07-23
2015-03-26T13:35:22Z
dc.date.issued.fl_str_mv 2007-02-26
dc.date.accessioned.fl_str_mv 2015-03-26T13:35:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOARES, Jaqueline dos Santos. The inductive coupling with On-Chip coils. 2007. 110 f. Dissertação (Mestrado em Física Teórica e Computacional; Preparação e Caracterização de Materiais; Sensores e Dispositivos.) - Universidade Federal de Viçosa, Viçosa, 2007.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/4268
identifier_str_mv SOARES, Jaqueline dos Santos. The inductive coupling with On-Chip coils. 2007. 110 f. Dissertação (Mestrado em Física Teórica e Computacional; Preparação e Caracterização de Materiais; Sensores e Dispositivos.) - Universidade Federal de Viçosa, Viçosa, 2007.
url http://locus.ufv.br/handle/123456789/4268
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Física Aplicada
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Física Teórica e Computacional; Preparação e Caracterização de Materiais; Sensores e Dispositivos.
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/4268/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/4268/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/4268/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 9d0bcaa0daae6ad97072fe3a335f2cad
32f7794528885bf392c5fa5dfc4671fc
479b75762ead40122034eff546bc8c3b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212901858476032