Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats

Detalhes bibliográficos
Autor(a) principal: Silva, Edson da
Data de Publicação: 2011
Outros Autores: Maldonado, Izabel Regina dos Santos Costa, Matta, Sérgio Luís Pinto da, Maia, Giselle Carvalho, Bozi, Luíz Henrique Marchesi, Silva, Karina Ana da, Castro, Cynthia Aparecida, Natali, Antônio José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/S1517-86922011000300012
http://www.locus.ufv.br/handle/123456789/17270
Resumo: While regular aerobic exercise promotes beneficial adaptations to the skeletal muscle, acute exhaustive exercise causes structural damage to the skeletal muscle cells. The aim of this study was to verify whether a low-intensity swimming program protects the skeletal muscles against damage induced by exhaustive exercise. Male Wistar rats (weight: 376.50 4.36g; age: 90 days) were randomly divided into four groups: sedentary control (SC, N=8); sedentary submitted to exhaustive test (SE, N=7); swimming trained (TN, N=7); swimming trained submitted to exhaustive test (TNE, N=7). Animals of TN and TNE groups were submitted to a swimming regimen without overload for 90 min/day, 5 days/wk, during 17 weeks. Forty-eight hours after the last training session, animals from SE and TNE groups were submitted to an exhaustive exercise protocol. At sacrifice, fragments of soleus and rectus femoris muscles were collected and submitted to histological analysis and heat shock protein (HSP70) expression measurement. The results showed that the time until exhaustion was greater in the STE than in SE group (125.0 6.00 vs. 90.0 8.48 min, respectively, P<0.05). The levels of blood lactate during exhaustive exercise were lower in animals from TNE than SE (5.31 ± 0.22 vs. 876 ± 0.59 mmol/L, respectively, P<0.05)The frequency of damaged fibers in the muscles was greater in SE (soleus: 34.86±0.04; rectus femoris: 37.57 ± 0.07) and STE (soleus: 41.57±0.08; rectus femoris: 39.57 ± 0.05), compared to groups SC (soleus: 13.88±0.81; rectus femoris: 16.75 ± 0.79) and ST (soleus: 24.14±0.06; rectus femoris: 24.0 ± 0.05), respectively (P<0.05). There was no significant difference at the HSP70 levels of the analyzed muscles among the four groups (P>0.05). In conclusion, although a low-intensity swimming training increased the animals' performance in the exhaustive exercise test, it did not protect their skeletal muscles against damage induced by exhaustive exercise.
id UFV_f9e71acc0c30ad700cb56a9c3daadb81
oai_identifier_str oai:locus.ufv.br:123456789/17270
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Silva, Edson daMaldonado, Izabel Regina dos Santos CostaMatta, Sérgio Luís Pinto daMaia, Giselle CarvalhoBozi, Luíz Henrique MarchesiSilva, Karina Ana daCastro, Cynthia AparecidaNatali, Antônio José2018-02-05T16:07:15Z2018-02-05T16:07:15Z2011-051517-8692http://dx.doi.org/10.1590/S1517-86922011000300012http://www.locus.ufv.br/handle/123456789/17270While regular aerobic exercise promotes beneficial adaptations to the skeletal muscle, acute exhaustive exercise causes structural damage to the skeletal muscle cells. The aim of this study was to verify whether a low-intensity swimming program protects the skeletal muscles against damage induced by exhaustive exercise. Male Wistar rats (weight: 376.50 4.36g; age: 90 days) were randomly divided into four groups: sedentary control (SC, N=8); sedentary submitted to exhaustive test (SE, N=7); swimming trained (TN, N=7); swimming trained submitted to exhaustive test (TNE, N=7). Animals of TN and TNE groups were submitted to a swimming regimen without overload for 90 min/day, 5 days/wk, during 17 weeks. Forty-eight hours after the last training session, animals from SE and TNE groups were submitted to an exhaustive exercise protocol. At sacrifice, fragments of soleus and rectus femoris muscles were collected and submitted to histological analysis and heat shock protein (HSP70) expression measurement. The results showed that the time until exhaustion was greater in the STE than in SE group (125.0 6.00 vs. 90.0 8.48 min, respectively, P<0.05). The levels of blood lactate during exhaustive exercise were lower in animals from TNE than SE (5.31 ± 0.22 vs. 876 ± 0.59 mmol/L, respectively, P<0.05)The frequency of damaged fibers in the muscles was greater in SE (soleus: 34.86±0.04; rectus femoris: 37.57 ± 0.07) and STE (soleus: 41.57±0.08; rectus femoris: 39.57 ± 0.05), compared to groups SC (soleus: 13.88±0.81; rectus femoris: 16.75 ± 0.79) and ST (soleus: 24.14±0.06; rectus femoris: 24.0 ± 0.05), respectively (P<0.05). There was no significant difference at the HSP70 levels of the analyzed muscles among the four groups (P>0.05). In conclusion, although a low-intensity swimming training increased the animals' performance in the exhaustive exercise test, it did not protect their skeletal muscles against damage induced by exhaustive exercise.engRevista Brasileira de Medicina do Esportev. 17, n. 3, p. 206-211, Mai/Jun 2011HSP70Physical exerciseMuscle damage.Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in ratsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf539727https://locus.ufv.br//bitstream/123456789/17270/1/artigo.pdf14fc1063081eae7bd3997e42454df667MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/17270/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4504https://locus.ufv.br//bitstream/123456789/17270/3/artigo.pdf.jpgd47d54615768f037d9c6d62248bacc3fMD53123456789/172702018-02-05 22:01:28.752oai:locus.ufv.br:123456789/17270Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-02-06T01:01:28LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
title Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
spellingShingle Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
Silva, Edson da
HSP70
Physical exercise
Muscle damage.
title_short Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
title_full Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
title_fullStr Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
title_full_unstemmed Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
title_sort Low-intensity swimming training does not protect the skeletal muscle against exhaustive exercise-induced injuries in rats
author Silva, Edson da
author_facet Silva, Edson da
Maldonado, Izabel Regina dos Santos Costa
Matta, Sérgio Luís Pinto da
Maia, Giselle Carvalho
Bozi, Luíz Henrique Marchesi
Silva, Karina Ana da
Castro, Cynthia Aparecida
Natali, Antônio José
author_role author
author2 Maldonado, Izabel Regina dos Santos Costa
Matta, Sérgio Luís Pinto da
Maia, Giselle Carvalho
Bozi, Luíz Henrique Marchesi
Silva, Karina Ana da
Castro, Cynthia Aparecida
Natali, Antônio José
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Edson da
Maldonado, Izabel Regina dos Santos Costa
Matta, Sérgio Luís Pinto da
Maia, Giselle Carvalho
Bozi, Luíz Henrique Marchesi
Silva, Karina Ana da
Castro, Cynthia Aparecida
Natali, Antônio José
dc.subject.pt-BR.fl_str_mv HSP70
Physical exercise
Muscle damage.
topic HSP70
Physical exercise
Muscle damage.
description While regular aerobic exercise promotes beneficial adaptations to the skeletal muscle, acute exhaustive exercise causes structural damage to the skeletal muscle cells. The aim of this study was to verify whether a low-intensity swimming program protects the skeletal muscles against damage induced by exhaustive exercise. Male Wistar rats (weight: 376.50 4.36g; age: 90 days) were randomly divided into four groups: sedentary control (SC, N=8); sedentary submitted to exhaustive test (SE, N=7); swimming trained (TN, N=7); swimming trained submitted to exhaustive test (TNE, N=7). Animals of TN and TNE groups were submitted to a swimming regimen without overload for 90 min/day, 5 days/wk, during 17 weeks. Forty-eight hours after the last training session, animals from SE and TNE groups were submitted to an exhaustive exercise protocol. At sacrifice, fragments of soleus and rectus femoris muscles were collected and submitted to histological analysis and heat shock protein (HSP70) expression measurement. The results showed that the time until exhaustion was greater in the STE than in SE group (125.0 6.00 vs. 90.0 8.48 min, respectively, P<0.05). The levels of blood lactate during exhaustive exercise were lower in animals from TNE than SE (5.31 ± 0.22 vs. 876 ± 0.59 mmol/L, respectively, P<0.05)The frequency of damaged fibers in the muscles was greater in SE (soleus: 34.86±0.04; rectus femoris: 37.57 ± 0.07) and STE (soleus: 41.57±0.08; rectus femoris: 39.57 ± 0.05), compared to groups SC (soleus: 13.88±0.81; rectus femoris: 16.75 ± 0.79) and ST (soleus: 24.14±0.06; rectus femoris: 24.0 ± 0.05), respectively (P<0.05). There was no significant difference at the HSP70 levels of the analyzed muscles among the four groups (P>0.05). In conclusion, although a low-intensity swimming training increased the animals' performance in the exhaustive exercise test, it did not protect their skeletal muscles against damage induced by exhaustive exercise.
publishDate 2011
dc.date.issued.fl_str_mv 2011-05
dc.date.accessioned.fl_str_mv 2018-02-05T16:07:15Z
dc.date.available.fl_str_mv 2018-02-05T16:07:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S1517-86922011000300012
http://www.locus.ufv.br/handle/123456789/17270
dc.identifier.issn.none.fl_str_mv 1517-8692
identifier_str_mv 1517-8692
url http://dx.doi.org/10.1590/S1517-86922011000300012
http://www.locus.ufv.br/handle/123456789/17270
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 17, n. 3, p. 206-211, Mai/Jun 2011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Revista Brasileira de Medicina do Esporte
publisher.none.fl_str_mv Revista Brasileira de Medicina do Esporte
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/17270/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/17270/2/license.txt
https://locus.ufv.br//bitstream/123456789/17270/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 14fc1063081eae7bd3997e42454df667
8a4605be74aa9ea9d79846c1fba20a33
d47d54615768f037d9c6d62248bacc3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212865440382976