Modelos de regressão não linear para descrição do crescimento de plantas de alho
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/4056 |
Resumo: | The objective of this study was to choose a nonlinear regression model that best described the dry matter accumulation in different parts of the plant garlic over time (60, 90, 120 and 150 days after planting). Were used 20 garlic accessions belonging to the Vegetable Germplasm Bank of Universidade Federal de Viçosa. In order to work only with groups of similar accessions, was applied the cluster analysis in order to obtaining these clusters. The dry matter of leaf, pseudostem, bulb and root were defined as variables in this cluster analysis, which was conducted by the Ward algorithm, using as dissimilarity measure the Mahalanobis distance. Based on Mojena s method to determine the number of groups, was formed three groups of accessions, whose means of dry matter of bulb, of root and of the whole plant were used to fitting of seven nonlinear regression models, namely : Mitscherlich, Gompertz, Logistic, Meloun I Meloun II, von Bertalanffy and Brody. Aiming to choose the best fitted model to the three characteristics of each group were calculated coefficient of determination (R2), the error mean square (EMS) and the average deviation absolut error. Comparing the values of the evaluators found that, for the three characteristics of the three groups, the best fit model was the Logistic model. |
id |
UFV_fb236e95021e4f2c595e3a15cbf4597d |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/4056 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Reis, Renata Maciel doshttp://lattes.cnpq.br/7023323201468555Nascimento, Moyséshttp://lattes.cnpq.br/6544887498494945Silva, Fabyano Fonseca ehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2Cecon, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5Ferreira, Adésiohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y82015-03-26T13:32:16Z2013-03-252015-03-26T13:32:16Z2012-07-16REIS, Renata Maciel dos. Nonlinear regression models for the growth description of plants garlic. 2012. 71 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2012.http://locus.ufv.br/handle/123456789/4056The objective of this study was to choose a nonlinear regression model that best described the dry matter accumulation in different parts of the plant garlic over time (60, 90, 120 and 150 days after planting). Were used 20 garlic accessions belonging to the Vegetable Germplasm Bank of Universidade Federal de Viçosa. In order to work only with groups of similar accessions, was applied the cluster analysis in order to obtaining these clusters. The dry matter of leaf, pseudostem, bulb and root were defined as variables in this cluster analysis, which was conducted by the Ward algorithm, using as dissimilarity measure the Mahalanobis distance. Based on Mojena s method to determine the number of groups, was formed three groups of accessions, whose means of dry matter of bulb, of root and of the whole plant were used to fitting of seven nonlinear regression models, namely : Mitscherlich, Gompertz, Logistic, Meloun I Meloun II, von Bertalanffy and Brody. Aiming to choose the best fitted model to the three characteristics of each group were calculated coefficient of determination (R2), the error mean square (EMS) and the average deviation absolut error. Comparing the values of the evaluators found that, for the three characteristics of the three groups, the best fit model was the Logistic model.O objetivo deste estudo foi escolher um modelo de regressão não linear que melhor descreve o acúmulo de matéria seca de diferentes partes da planta do alho ao longo do tempo (60, 90, 120 e 150 dias após plantio). Foram utilizados 20 acessos de alho pertencentes ao Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa (BGH/UFV). A fim de se trabalhar apenas com grupos de acessos semelhantes, aplicou-se a análise de agrupamento para a formação desses grupos. As matérias secas da folha, do pseudocaule, do bulbo e da raiz foram definidas como as variáveis nessa análise de agrupamento, que foi realizado por meio do algoritmo de Ward, utilizando como medida de dissimilaridade a distância generalizada de Mahalanobis. O número ótimo de grupos foi determinado por meio do Método de Mojena, o qual indicou três grupos de acessos, cujas médias de matéria seca do bulbo, da raiz e total da planta foram utilizadas para o ajuste de sete modelos de regressão não linear, a saber: Mitscherlich, Gompertz, Logístico, Meloun I, Meloun II, Brody e von Bertalanffy. A identificação do modelo que melhor se ajustou as três características de cada grupo foi realizada mediante coeficiente de determinação (R2), o quadrado médio do resíduo (QMR) e o desvio médio absoluto dos resíduos (DMA). Comparando os valores desses avaliadores observou-se que, para as três caraterísticas dos três grupos, o modelo que melhor se ajustou foi o modelo Logístico.application/pdfporUniversidade Federal de ViçosaMestrado em Estatística Aplicada e BiometriaUFVBREstatística Aplicada e BiometriaAllium sativum L.Análise de agrupamentoComparação de modelosAllium sativum L.Cluster analysisComparison modelsCNPQ::CIENCIAS AGRARIASModelos de regressão não linear para descrição do crescimento de plantas de alhoNonlinear regression models for the growth description of plants garlicinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1125314https://locus.ufv.br//bitstream/123456789/4056/1/texto%20completo.pdf0140d25420c9aa6705ebe6bcf03fb7faMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain77322https://locus.ufv.br//bitstream/123456789/4056/2/texto%20completo.pdf.txt741ac1b3c13491d528dfb2d38cb19e02MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3625https://locus.ufv.br//bitstream/123456789/4056/3/texto%20completo.pdf.jpgcda94abbc0e51bebe845fd7862b76232MD53123456789/40562016-04-09 23:17:46.632oai:locus.ufv.br:123456789/4056Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:17:46LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
dc.title.alternative.eng.fl_str_mv |
Nonlinear regression models for the growth description of plants garlic |
title |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
spellingShingle |
Modelos de regressão não linear para descrição do crescimento de plantas de alho Reis, Renata Maciel dos Allium sativum L. Análise de agrupamento Comparação de modelos Allium sativum L. Cluster analysis Comparison models CNPQ::CIENCIAS AGRARIAS |
title_short |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
title_full |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
title_fullStr |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
title_full_unstemmed |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
title_sort |
Modelos de regressão não linear para descrição do crescimento de plantas de alho |
author |
Reis, Renata Maciel dos |
author_facet |
Reis, Renata Maciel dos |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/7023323201468555 |
dc.contributor.author.fl_str_mv |
Reis, Renata Maciel dos |
dc.contributor.advisor-co1.fl_str_mv |
Nascimento, Moysés |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6544887498494945 |
dc.contributor.advisor-co2.fl_str_mv |
Silva, Fabyano Fonseca e |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2 |
dc.contributor.advisor1.fl_str_mv |
Cecon, Paulo Roberto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5 |
dc.contributor.referee1.fl_str_mv |
Ferreira, Adésio |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y8 |
contributor_str_mv |
Nascimento, Moysés Silva, Fabyano Fonseca e Cecon, Paulo Roberto Ferreira, Adésio |
dc.subject.por.fl_str_mv |
Allium sativum L. Análise de agrupamento Comparação de modelos |
topic |
Allium sativum L. Análise de agrupamento Comparação de modelos Allium sativum L. Cluster analysis Comparison models CNPQ::CIENCIAS AGRARIAS |
dc.subject.eng.fl_str_mv |
Allium sativum L. Cluster analysis Comparison models |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS |
description |
The objective of this study was to choose a nonlinear regression model that best described the dry matter accumulation in different parts of the plant garlic over time (60, 90, 120 and 150 days after planting). Were used 20 garlic accessions belonging to the Vegetable Germplasm Bank of Universidade Federal de Viçosa. In order to work only with groups of similar accessions, was applied the cluster analysis in order to obtaining these clusters. The dry matter of leaf, pseudostem, bulb and root were defined as variables in this cluster analysis, which was conducted by the Ward algorithm, using as dissimilarity measure the Mahalanobis distance. Based on Mojena s method to determine the number of groups, was formed three groups of accessions, whose means of dry matter of bulb, of root and of the whole plant were used to fitting of seven nonlinear regression models, namely : Mitscherlich, Gompertz, Logistic, Meloun I Meloun II, von Bertalanffy and Brody. Aiming to choose the best fitted model to the three characteristics of each group were calculated coefficient of determination (R2), the error mean square (EMS) and the average deviation absolut error. Comparing the values of the evaluators found that, for the three characteristics of the three groups, the best fit model was the Logistic model. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-07-16 |
dc.date.available.fl_str_mv |
2013-03-25 2015-03-26T13:32:16Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T13:32:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
REIS, Renata Maciel dos. Nonlinear regression models for the growth description of plants garlic. 2012. 71 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2012. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/4056 |
identifier_str_mv |
REIS, Renata Maciel dos. Nonlinear regression models for the growth description of plants garlic. 2012. 71 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2012. |
url |
http://locus.ufv.br/handle/123456789/4056 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Mestrado em Estatística Aplicada e Biometria |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Estatística Aplicada e Biometria |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/4056/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/4056/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/4056/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
0140d25420c9aa6705ebe6bcf03fb7fa 741ac1b3c13491d528dfb2d38cb19e02 cda94abbc0e51bebe845fd7862b76232 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212997107974144 |