On a finite and discrete algebraic model for educing space and movement from prime matter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Archai (Online) |
Texto Completo: | https://periodicos.unb.br/index.php/archai/article/view/12790 |
Resumo: | In this paper we aim at presenting a finite and discrete algebraic model for the Aristotelian concept of substratum or prime matter (proté hylé), based upon further developments on this concept as carried out by Thomas Aquinas. Rather than considering it to be an outdated and obscure concept, it is shown how much profitable and current this Aristotelian insight is, both on the reality (yet not an individual) of a substratum that would pervade the whole of physical nature and on being the basic matrix for bodily genesis and corruption. This basic insight, despite of being a much controverted object over time, has been accepted by renowned authors, although in no way examined through any mathematical modeling. Additionally, it is essential that this substratum be endowed with qualities which allow the extraction of both space and bodily movement from itself. In this work, we present an algebraic model ex hypothesis isomorphic to the substratum, from which some relevant results like space extension and the dynamic character of matter are derived, and also a basic relation between operators which are obtained from dual vector spaces on the algebra and that provides the discrete case for Heisenberg’s uncertainty relations. |
id |
UNB-18_a9f7c1c4e59430c10479617105f8dd93 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/12790 |
network_acronym_str |
UNB-18 |
network_name_str |
Revista Archai (Online) |
repository_id_str |
|
spelling |
On a finite and discrete algebraic model for educing space and movement from prime matterSobre um modelo algébrico finito e discreto para a edução do espaço e do movimento a partir da matéria primeirametafísicaontologia da matériafilosofia da naturezafilosofia da físicametaphysicsontology of matterphilosophy of naturephilosophy of physicsIn this paper we aim at presenting a finite and discrete algebraic model for the Aristotelian concept of substratum or prime matter (proté hylé), based upon further developments on this concept as carried out by Thomas Aquinas. Rather than considering it to be an outdated and obscure concept, it is shown how much profitable and current this Aristotelian insight is, both on the reality (yet not an individual) of a substratum that would pervade the whole of physical nature and on being the basic matrix for bodily genesis and corruption. This basic insight, despite of being a much controverted object over time, has been accepted by renowned authors, although in no way examined through any mathematical modeling. Additionally, it is essential that this substratum be endowed with qualities which allow the extraction of both space and bodily movement from itself. In this work, we present an algebraic model ex hypothesis isomorphic to the substratum, from which some relevant results like space extension and the dynamic character of matter are derived, and also a basic relation between operators which are obtained from dual vector spaces on the algebra and that provides the discrete case for Heisenberg’s uncertainty relations.Este artigo tem por objetivo apresentar um modelo algébrico finito e discreto para o conceito aristotélico de substrato ou matéria prima (proté hylé) com base no desenvolvimento posterior deste conceito em Tomás de Aquino. De forma oposta a considerá-lo como um conceito ultrapassado e obscuro, mostra-se a atualidade e proficuidade desta intuição aristotélica sobre a realidade, ainda que não individualizada, de um substrato que permearia a totalidade da natureza física, sendo a matriz fundamental para a gênese e a corrupção corpóreas. Esta intuição básica ainda que objeto de controvérsia ao longo do tempo foi aceita por diversos autores de destaque, porém em nenhum caso foi explorada através de um modelo matemático. Ademais, é fundamental que o substrato esteja dotado de qualidades que tornem possível que dele se possa extrair tanto o espaço como o movimento corpóreo. Neste trabalho, apresentamos um modelo algébrico por hipótese isomorfo ao substrato, do qual extraímos consequências relevantes, como a extensão do espaço e o caráter dinâmico da matéria, além de uma relação básica entre operadores derivados de espaços vetoriais duais da álgebra que formalmente provê o caso discreto da relação de incerteza de Heisenberg.Cátedra UNESCO Archai (Universidade de Brasília); Imprensa da Universidade de Coimbra, Portugal; Annablume Editora, São Paulo, Brasil2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticlesArtigosapplication/pdfhttps://periodicos.unb.br/index.php/archai/article/view/1279010.14195/1984-249X_24_2Revista Archai; No. 24 (2018): Archai Journal nº24 (September, 2018); 35Archai Journal; n. 24 (2018): Revista Archai nº24 (setembro, 2018); 351984-249X2179-496010.14195/1984-249X_24reponame:Revista Archai (Online)instname:Universidade de Brasília (UnB)instacron:UNBporhttps://periodicos.unb.br/index.php/archai/article/view/12790/11176Costa, Rodolfo Petrônio dainfo:eu-repo/semantics/openAccess2019-08-19T15:34:23Zoai:ojs.pkp.sfu.ca:article/12790Revistahttps://periodicos.unb.br/index.php/archaiPUBhttps://periodicos.unb.br/index.php/archai/oai||archaijournal@unb.br|| cornelli@unb.br1984-249X1984-249Xopendoar:2019-08-19T15:34:23Revista Archai (Online) - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
On a finite and discrete algebraic model for educing space and movement from prime matter Sobre um modelo algébrico finito e discreto para a edução do espaço e do movimento a partir da matéria primeira |
title |
On a finite and discrete algebraic model for educing space and movement from prime matter |
spellingShingle |
On a finite and discrete algebraic model for educing space and movement from prime matter Costa, Rodolfo Petrônio da metafísica ontologia da matéria filosofia da natureza filosofia da física metaphysics ontology of matter philosophy of nature philosophy of physics |
title_short |
On a finite and discrete algebraic model for educing space and movement from prime matter |
title_full |
On a finite and discrete algebraic model for educing space and movement from prime matter |
title_fullStr |
On a finite and discrete algebraic model for educing space and movement from prime matter |
title_full_unstemmed |
On a finite and discrete algebraic model for educing space and movement from prime matter |
title_sort |
On a finite and discrete algebraic model for educing space and movement from prime matter |
author |
Costa, Rodolfo Petrônio da |
author_facet |
Costa, Rodolfo Petrônio da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Costa, Rodolfo Petrônio da |
dc.subject.por.fl_str_mv |
metafísica ontologia da matéria filosofia da natureza filosofia da física metaphysics ontology of matter philosophy of nature philosophy of physics |
topic |
metafísica ontologia da matéria filosofia da natureza filosofia da física metaphysics ontology of matter philosophy of nature philosophy of physics |
description |
In this paper we aim at presenting a finite and discrete algebraic model for the Aristotelian concept of substratum or prime matter (proté hylé), based upon further developments on this concept as carried out by Thomas Aquinas. Rather than considering it to be an outdated and obscure concept, it is shown how much profitable and current this Aristotelian insight is, both on the reality (yet not an individual) of a substratum that would pervade the whole of physical nature and on being the basic matrix for bodily genesis and corruption. This basic insight, despite of being a much controverted object over time, has been accepted by renowned authors, although in no way examined through any mathematical modeling. Additionally, it is essential that this substratum be endowed with qualities which allow the extraction of both space and bodily movement from itself. In this work, we present an algebraic model ex hypothesis isomorphic to the substratum, from which some relevant results like space extension and the dynamic character of matter are derived, and also a basic relation between operators which are obtained from dual vector spaces on the algebra and that provides the discrete case for Heisenberg’s uncertainty relations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articles Artigos |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.unb.br/index.php/archai/article/view/12790 10.14195/1984-249X_24_2 |
url |
https://periodicos.unb.br/index.php/archai/article/view/12790 |
identifier_str_mv |
10.14195/1984-249X_24_2 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.unb.br/index.php/archai/article/view/12790/11176 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Cátedra UNESCO Archai (Universidade de Brasília); Imprensa da Universidade de Coimbra, Portugal; Annablume Editora, São Paulo, Brasil |
publisher.none.fl_str_mv |
Cátedra UNESCO Archai (Universidade de Brasília); Imprensa da Universidade de Coimbra, Portugal; Annablume Editora, São Paulo, Brasil |
dc.source.none.fl_str_mv |
Revista Archai; No. 24 (2018): Archai Journal nº24 (September, 2018); 35 Archai Journal; n. 24 (2018): Revista Archai nº24 (setembro, 2018); 35 1984-249X 2179-4960 10.14195/1984-249X_24 reponame:Revista Archai (Online) instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Revista Archai (Online) |
collection |
Revista Archai (Online) |
repository.name.fl_str_mv |
Revista Archai (Online) - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
||archaijournal@unb.br|| cornelli@unb.br |
_version_ |
1798319945300312064 |