Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Interdisciplinar de Pesquisa em Engenharia |
Texto Completo: | https://periodicos.unb.br/index.php/ripe/article/view/33345 |
Resumo: | Inverse problem techniques have been used in different engineering application aiming to convert observed measurements or data acquired together to the prior knowledge of the system into information about material properties, geometry, locations of anomalies, e.g. cracks and structural damage, excitation force, among others. The present papers aim to estimate parameters of a dynamic system with the inverse problem using Bayesian Inference technique. Multiples studies are presented to analyse the statistical significance of the catches for the settings, making a critical analysis between a solution via Bayesian Inference linked to minimising the objective function with stochastic methods. It applied through stochastic strategies as the Maximum Likelihood (MLE), Least Squares (LSE) and Markov Chains Monte Carlo (MCMC), implemented with the Metropolis-Hastings algorithm (MH). In the estimation, the random parameters assumed distribution inference of Gaussian and Uniform types for different standard deviations. The results demonstrated the efficacy of Bayesian inference to estimates parameter of the oscillator systems from its dynamic response and the statistical parameter information. |
id |
UNB-19_c6c0660c6b30a4bb213ca00b1b705603 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/33345 |
network_acronym_str |
UNB-19 |
network_name_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository_id_str |
|
spelling |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte CarloNumerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte CarloBayesian Inference; Maximum Likelihood; Markov Chain Monte Carlo (MCMC); Inverse problem; Parameters estimation; Dynamic system. Inverse problem techniques have been used in different engineering application aiming to convert observed measurements or data acquired together to the prior knowledge of the system into information about material properties, geometry, locations of anomalies, e.g. cracks and structural damage, excitation force, among others. The present papers aim to estimate parameters of a dynamic system with the inverse problem using Bayesian Inference technique. Multiples studies are presented to analyse the statistical significance of the catches for the settings, making a critical analysis between a solution via Bayesian Inference linked to minimising the objective function with stochastic methods. It applied through stochastic strategies as the Maximum Likelihood (MLE), Least Squares (LSE) and Markov Chains Monte Carlo (MCMC), implemented with the Metropolis-Hastings algorithm (MH). In the estimation, the random parameters assumed distribution inference of Gaussian and Uniform types for different standard deviations. The results demonstrated the efficacy of Bayesian inference to estimates parameter of the oscillator systems from its dynamic response and the statistical parameter information.Inverse problem techniques have been used in different engineering application aiming to convertobserved measurements or data acquired together to the prior knowledge of the system into information aboutmaterial properties, geometry, locations of anomalies, e.g. cracks and structural damage, excitation force, amongothers. The present papers aim to estimate parameters of a dynamic system with the inverse problem usingBayesian Inference technique. Multiples studies are presented to analyse the statistical significance of the catchesfor the settings, making a critical analysis between a solution via Bayesian Inference linked to minimising theobjective function with stochastic methods. It applied through stochastic strategies as the Maximum Likelihood(MLE), Least Squares (LSE) and Markov Chains Monte Carlo (MCMC), implemented with the Metropolis-Hastingsalgorithm (MH). In the estimation, the random parameters assumed distribution inference of Gaussian and Uniformtypes for different standard deviations. The results demonstrated the efficacy of Bayesian inference to estimatesparameter of the oscillator systems from its dynamic response and the statistical parameter information. Programa de Pós-Graduação em Integridade de Materiais da Engenharia2020-09-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/33345Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 6 No. 1 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 28-37Revista Interdisciplinar de Pesquisa em Engenharia; v. 6 n. 1 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 28-372447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBporhttps://periodicos.unb.br/index.php/ripe/article/view/33345/27459Copyright (c) 2020 Revista Interdisciplinar de Pesquisa em Engenhariahttps://creativecommons.org/licenses/by-nd/4.0info:eu-repo/semantics/openAccessMachado, MarcelaFreire, Gustavo Taffarel Oliveira Duarte, Vitória Carolina Silva 2020-09-02T23:49:00Zoai:ojs.pkp.sfu.ca:article/33345Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2020-09-02T23:49Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
title |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
spellingShingle |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo Machado, Marcela Bayesian Inference; Maximum Likelihood; Markov Chain Monte Carlo (MCMC); Inverse problem; Parameters estimation; Dynamic system. |
title_short |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
title_full |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
title_fullStr |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
title_full_unstemmed |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
title_sort |
Numerical identification of a linear oscillator stiffness using Bayesian inference and Markov chain Monte Carlo |
author |
Machado, Marcela |
author_facet |
Machado, Marcela Freire, Gustavo Taffarel Oliveira Duarte, Vitória Carolina Silva |
author_role |
author |
author2 |
Freire, Gustavo Taffarel Oliveira Duarte, Vitória Carolina Silva |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Machado, Marcela Freire, Gustavo Taffarel Oliveira Duarte, Vitória Carolina Silva |
dc.subject.por.fl_str_mv |
Bayesian Inference; Maximum Likelihood; Markov Chain Monte Carlo (MCMC); Inverse problem; Parameters estimation; Dynamic system. |
topic |
Bayesian Inference; Maximum Likelihood; Markov Chain Monte Carlo (MCMC); Inverse problem; Parameters estimation; Dynamic system. |
description |
Inverse problem techniques have been used in different engineering application aiming to convert observed measurements or data acquired together to the prior knowledge of the system into information about material properties, geometry, locations of anomalies, e.g. cracks and structural damage, excitation force, among others. The present papers aim to estimate parameters of a dynamic system with the inverse problem using Bayesian Inference technique. Multiples studies are presented to analyse the statistical significance of the catches for the settings, making a critical analysis between a solution via Bayesian Inference linked to minimising the objective function with stochastic methods. It applied through stochastic strategies as the Maximum Likelihood (MLE), Least Squares (LSE) and Markov Chains Monte Carlo (MCMC), implemented with the Metropolis-Hastings algorithm (MH). In the estimation, the random parameters assumed distribution inference of Gaussian and Uniform types for different standard deviations. The results demonstrated the efficacy of Bayesian inference to estimates parameter of the oscillator systems from its dynamic response and the statistical parameter information. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/33345 |
url |
https://periodicos.unb.br/index.php/ripe/article/view/33345 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/33345/27459 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Revista Interdisciplinar de Pesquisa em Engenharia https://creativecommons.org/licenses/by-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Revista Interdisciplinar de Pesquisa em Engenharia https://creativecommons.org/licenses/by-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
dc.source.none.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 6 No. 1 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 28-37 Revista Interdisciplinar de Pesquisa em Engenharia; v. 6 n. 1 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 28-37 2447-6102 reponame:Revista Interdisciplinar de Pesquisa em Engenharia instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
collection |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository.name.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
anflor@unb.br |
_version_ |
1798315227156054016 |