Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio2.unb.br/jspui/handle/10482/48314 https://doi.org/10.1186/s12645-021-00103-w https://orcid.org/0000-0002-1096-3236 |
Resumo: | Background: Self-emulsifying drug delivery systems (SEDDSs) have attracted atten‑ tion because of their efects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purifed from red guava (nanoLPG) was pro‑ duced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantifcation, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated. Results: NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters sufered insignifcant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043±0.002 mg Trolox/mL. The in vivo studies did not reveal any signifcant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not afect PBMC viability. |
id |
UNB_50809f061f84ca7f0a01c95cef58a3f4 |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/48314 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cellsNanomedicinaGoiabaCarotenóidesAtividade antitumoralBackground: Self-emulsifying drug delivery systems (SEDDSs) have attracted atten‑ tion because of their efects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purifed from red guava (nanoLPG) was pro‑ duced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantifcation, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated. Results: NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters sufered insignifcant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043±0.002 mg Trolox/mL. The in vivo studies did not reveal any signifcant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not afect PBMC viability.Faculdade de Medicina (FM)Instituto de Ciências Biológicas (IB)Departamento de Biologia Celular (IB CEL)Faculdade de Ciências da Saúde (FS)Programa de Pós-Graduação em Ciências MédicasBioMed CentralUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade de Brasília, Instituto de Ciências Biológicas, Laboratório de Microscopia e MicroanáliseUniversidade de Brasília, Faculdade de Ciências da Saúde, Laboratório de Hematologia e Células‑TroncoUniversidade do Porto, Faculdade de Ciências, Departamento de Química e Bioquímica, LAQV/ REQUIMTEUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade Federal do Delta do Parnaíba, Núcleo de Pesquisa em Biodiversidade e BiotecnologiaUniversidade Federal do Piauí, Departamento de Biofísica e FisiologiaUniversidade de Brasília, Faculdade de Ciências da Saúde, Laboratório de Hematologia e Células‑TroncoUniversidade Federal do Piauí, Departamento de Biofísica e FisiologiaUniversidade Federal do Piauí, Departamento de Biofísica e FisiologiaUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade de Brasília, Instituto de Ciências Biológicas, Laboratório de Microscopia e MicroanáliseUniversidade do Porto, Faculdade de Ciências, Departamento de Química e Bioquímica, LAQV/ REQUIMTEUniversidade do Porto, Faculdade de Ciências, Departamento de Química e Bioquímica, LAQV/ REQUIMTEUniversity of Lincoln, The Bridge, School of Chemistry, Joseph Banks LaboratoriesUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaUniversidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de MorfologiaVasconcelos, Andreanne GomesBarros, Ana Luisa A. N.Cabral, Wanessa FelixMoreira, Daniel CarneiroSilva, Ingrid Gracielle M. daCarvalho, Amandda Évelin Silva deAlmeida, Miguel P. deAlbuquerque, Lucas Fraga FriaçaSantos, Raimunda C. dosBrito, Ana Karolinne S.Araújo, Felipe Saldanha deArcanjo, Daniel Dias RufinoMartins, Maria do Carmo Carvalho eBorges, Tatiana Karla dos SantosBáo, Sônia NairPlácido, AlexandraEaton, PeterKuckelhaus, Selma Aparecida SouzaLeite, José Roberto de Souza de Almeida2024-06-18T14:36:26Z2024-06-18T14:36:26Z2021-11-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfVASCONCELOS, Andreanne G. et al. Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells. Cancer Nanotechnology, [S. l.], v. 12, art. n. 30, 2021. DOI: https://doi.org/10.1186/s12645-021-00103-w. Disponível em: https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-021-00103-w. Acesso em: 18 jun. 2024.http://repositorio2.unb.br/jspui/handle/10482/48314https://doi.org/10.1186/s12645-021-00103-whttps://orcid.org/0000-0002-1096-3236eng© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑ rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publi cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2024-06-28T15:38:36Zoai:repositorio.unb.br:10482/48314Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2024-06-28T15:38:36Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
title |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
spellingShingle |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells Vasconcelos, Andreanne Gomes Nanomedicina Goiaba Carotenóides Atividade antitumoral |
title_short |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
title_full |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
title_fullStr |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
title_full_unstemmed |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
title_sort |
Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells |
author |
Vasconcelos, Andreanne Gomes |
author_facet |
Vasconcelos, Andreanne Gomes Barros, Ana Luisa A. N. Cabral, Wanessa Felix Moreira, Daniel Carneiro Silva, Ingrid Gracielle M. da Carvalho, Amandda Évelin Silva de Almeida, Miguel P. de Albuquerque, Lucas Fraga Friaça Santos, Raimunda C. dos Brito, Ana Karolinne S. Araújo, Felipe Saldanha de Arcanjo, Daniel Dias Rufino Martins, Maria do Carmo Carvalho e Borges, Tatiana Karla dos Santos Báo, Sônia Nair Plácido, Alexandra Eaton, Peter Kuckelhaus, Selma Aparecida Souza Leite, José Roberto de Souza de Almeida |
author_role |
author |
author2 |
Barros, Ana Luisa A. N. Cabral, Wanessa Felix Moreira, Daniel Carneiro Silva, Ingrid Gracielle M. da Carvalho, Amandda Évelin Silva de Almeida, Miguel P. de Albuquerque, Lucas Fraga Friaça Santos, Raimunda C. dos Brito, Ana Karolinne S. Araújo, Felipe Saldanha de Arcanjo, Daniel Dias Rufino Martins, Maria do Carmo Carvalho e Borges, Tatiana Karla dos Santos Báo, Sônia Nair Plácido, Alexandra Eaton, Peter Kuckelhaus, Selma Aparecida Souza Leite, José Roberto de Souza de Almeida |
author2_role |
author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade de Brasília, Instituto de Ciências Biológicas, Laboratório de Microscopia e Microanálise Universidade de Brasília, Faculdade de Ciências da Saúde, Laboratório de Hematologia e Células‑Tronco Universidade do Porto, Faculdade de Ciências, Departamento de Química e Bioquímica, LAQV/ REQUIMTE Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa em Biodiversidade e Biotecnologia Universidade Federal do Piauí, Departamento de Biofísica e Fisiologia Universidade de Brasília, Faculdade de Ciências da Saúde, Laboratório de Hematologia e Células‑Tronco Universidade Federal do Piauí, Departamento de Biofísica e Fisiologia Universidade Federal do Piauí, Departamento de Biofísica e Fisiologia Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade de Brasília, Instituto de Ciências Biológicas, Laboratório de Microscopia e Microanálise Universidade do Porto, Faculdade de Ciências, Departamento de Química e Bioquímica, LAQV/ REQUIMTE Universidade do Porto, Faculdade de Ciências, Departamento de Química e Bioquímica, LAQV/ REQUIMTE University of Lincoln, The Bridge, School of Chemistry, Joseph Banks Laboratories Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, Área de Morfologia |
dc.contributor.author.fl_str_mv |
Vasconcelos, Andreanne Gomes Barros, Ana Luisa A. N. Cabral, Wanessa Felix Moreira, Daniel Carneiro Silva, Ingrid Gracielle M. da Carvalho, Amandda Évelin Silva de Almeida, Miguel P. de Albuquerque, Lucas Fraga Friaça Santos, Raimunda C. dos Brito, Ana Karolinne S. Araújo, Felipe Saldanha de Arcanjo, Daniel Dias Rufino Martins, Maria do Carmo Carvalho e Borges, Tatiana Karla dos Santos Báo, Sônia Nair Plácido, Alexandra Eaton, Peter Kuckelhaus, Selma Aparecida Souza Leite, José Roberto de Souza de Almeida |
dc.subject.por.fl_str_mv |
Nanomedicina Goiaba Carotenóides Atividade antitumoral |
topic |
Nanomedicina Goiaba Carotenóides Atividade antitumoral |
description |
Background: Self-emulsifying drug delivery systems (SEDDSs) have attracted atten‑ tion because of their efects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purifed from red guava (nanoLPG) was pro‑ duced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantifcation, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated. Results: NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters sufered insignifcant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043±0.002 mg Trolox/mL. The in vivo studies did not reveal any signifcant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not afect PBMC viability. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-07 2024-06-18T14:36:26Z 2024-06-18T14:36:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
VASCONCELOS, Andreanne G. et al. Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells. Cancer Nanotechnology, [S. l.], v. 12, art. n. 30, 2021. DOI: https://doi.org/10.1186/s12645-021-00103-w. Disponível em: https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-021-00103-w. Acesso em: 18 jun. 2024. http://repositorio2.unb.br/jspui/handle/10482/48314 https://doi.org/10.1186/s12645-021-00103-w https://orcid.org/0000-0002-1096-3236 |
identifier_str_mv |
VASCONCELOS, Andreanne G. et al. Promising self‑emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.) : in vivo toxicity, biodistribution and cytotoxicity on DU‑145 prostate cancer cells. Cancer Nanotechnology, [S. l.], v. 12, art. n. 30, 2021. DOI: https://doi.org/10.1186/s12645-021-00103-w. Disponível em: https://cancer-nano.biomedcentral.com/articles/10.1186/s12645-021-00103-w. Acesso em: 18 jun. 2024. |
url |
http://repositorio2.unb.br/jspui/handle/10482/48314 https://doi.org/10.1186/s12645-021-00103-w https://orcid.org/0000-0002-1096-3236 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1818901017526272000 |