Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos

Detalhes bibliográficos
Autor(a) principal: Santos, Jailson França dos
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UnB
Texto Completo: http://repositorio2.unb.br/jspui/handle/10482/48616
Resumo: Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2023.
id UNB_9f86c585d4ddaa6c6456c3aed1f4cfa4
oai_identifier_str oai:repositorio.unb.br:10482/48616
network_acronym_str UNB
network_name_str Repositório Institucional da UnB
repository_id_str
spelling Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicosMétodo dos elementos de contornoAnálise isogeométricaTese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2023.Esta tese apresenta uma análise isogeométrica do Método dos Elementos de Contorno (MEC Isogeométrico) juntamente com o método da expansão em multipolos rápidos (do acrônimos em inglês - FMM), aplicado a problemas elásticos anisotrópicos em plano bidimensional. A solução fundamental anisotrópica de Lekhnitskii é utilizada, e nela existem singularidades. A do tipo fraca do núcleo de deslocamento, é tratada com o método da transformada de Telles, enquanto que a singularidade forte do núcleo da força de superfície é tratada pelo método da subtração de singularidade (do acrônimos em inglês - SST). As funções de forma utilizadas neste trabalho são as B-Splines Racionais Não Uniformes (do acrônimos em inglês - NURBS). Assim, a mesma representação matemática do Desenho Assistido por Computador (do acrônimos em inglês - CAD) é utilizada no código computacional desenvolvido, evitando a geração de malhas e fornecendo representação exata para maioria das geometrias complexas utilizadas na análise de engenharia. Além do FMM, a fim de melhorar mais a eficiência numérica do código, reduzindo o custo computacional, as NURBS são decompostas em curvas de Bézier sem a perda das propriedades de continuidade, utilizando a decomposição de Bézier. Desta forma, a formulação isogeométrica se torna similar ao método dos elementos de contorno convencional. Como as matrizes do sistema algébrico não são explicitamente montadas devido ao FMM, é necessário usar um método iterativo para resolver o sistema de equações lineares. O método dos mínimos resíduos generalizados (do acrônimos em inglês - GMRES) foi escolhido, de acordo com sua eficácia notada em trabalhos anteriores e conforme a literatura. Para avaliar a acurácia da formulação, diferentes exemplos numéricos aplicados para materiais quase-isotrópicos, anisotrópicos e ortotrópicos são analisados. Os resultados numéricos do MEC isogeométrico e sua versão acelerada pelo FMM, são comparadas com soluções analíticas, e mesmo com poucos graus de liberdade, mostram que possuem boas precisões numéricas. Além destes, a formulação acelerada também foi aplicada em problemas de larga escala, modelos com milhares de graus de liberdade, provando que é mais rápida que o MEC isogeométrico, e portanto, é uma formulação muito indicada para problemas elásticos em larga escala, principalmente para geometrias que são mais indicadas o uso de elementos de contorno de alta ordem.This thesis presents an Isogeometric Analysis of the Boundary Element Method (IGABEM) together with the fast multipole expansion method, applied to anisotropic elastic problems in a two-dimensional plane. Lekhnitskii’s anisotropic fundamental solution is used, and in it there are singularities, that of the weak type of the displacement kernel, which is treated with the Telles transform method, while the strong singularity of the surface force kernel is treated by the technique of the singularity subtraction (SST). The shape functions used in this work are Non-Uniform Rational B-Splines (NURBS). Thus, the same mathematical representation of Computer Aided Design (CAD) is used in the developed computational code, avoiding the generation of meshes and providing exact representation for most of the complex geometries used in engineering analysis. In addition to the FMM, in order to further improve the numerical efficiency of the code, reducing the computational cost, the NURBS are decomposed into Bézier curves without losing the continuity properties, using the Bézier decomposition. In this way, the isogeometric formulation becomes similar to the conventional boundary element method. As the matrices of the algebraic system are not explicitly assembled due to the FMM, it is necessary to use an iterative method to solve the system of linear equations. The generalized minimal residual method (GMRES) was chosen, according to its efficiency noted in previous works and according to the literature. To evaluate the accuracy of the formulation, different numerical examples applied to quasi-isotropic, anisotropic and orthotropic materials are analyzed. The numerical results of the IGABEM and its accelerated version by the FMM are compared with analytical solutions, and even with few degrees of freedom, they show that they have good numerical precision. In addition to these, the accelerated formulation was also applied to large-scale problems, models with thousands of degrees of freedom, proving that it is faster than the IGABEM, and therefore, it is a very suitable formulation for large-scale elastic problems, mainly for geometries that are best suited to the use of higher-order boundary elements.Faculdade de Tecnologia (FT)Departamento de Engenharia Mecânica (FT ENM)Programa de Pós-Graduação em Ciências MecânicasAlbuquerque, Eder Lima deCampos, Lucas SilveiraSantos, Jailson França dos2024-07-08T20:17:16Z2024-07-08T20:17:16Z2024-07-082023-05-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSANTOS, Jailson França dos. Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos. 2023. 164 f., il. Tese (Doutorado em Ciências Mecânicas) — Universidade de Brasília, Brasília, 2023.http://repositorio2.unb.br/jspui/handle/10482/48616porA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2024-07-08T20:17:16Zoai:repositorio.unb.br:10482/48616Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2024-07-08T20:17:16Repositório Institucional da UnB - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
title Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
spellingShingle Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
Santos, Jailson França dos
Método dos elementos de contorno
Análise isogeométrica
title_short Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
title_full Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
title_fullStr Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
title_full_unstemmed Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
title_sort Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos
author Santos, Jailson França dos
author_facet Santos, Jailson França dos
author_role author
dc.contributor.none.fl_str_mv Albuquerque, Eder Lima de
Campos, Lucas Silveira
dc.contributor.author.fl_str_mv Santos, Jailson França dos
dc.subject.por.fl_str_mv Método dos elementos de contorno
Análise isogeométrica
topic Método dos elementos de contorno
Análise isogeométrica
description Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2023.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-19
2024-07-08T20:17:16Z
2024-07-08T20:17:16Z
2024-07-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Jailson França dos. Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos. 2023. 164 f., il. Tese (Doutorado em Ciências Mecânicas) — Universidade de Brasília, Brasília, 2023.
http://repositorio2.unb.br/jspui/handle/10482/48616
identifier_str_mv SANTOS, Jailson França dos. Aplicação do método dos elementos de contorno com expansão em multipolos e abordagem isogeométrica em problemas elásticos anisotrópicos. 2023. 164 f., il. Tese (Doutorado em Ciências Mecânicas) — Universidade de Brasília, Brasília, 2023.
url http://repositorio2.unb.br/jspui/handle/10482/48616
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UnB
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Repositório Institucional da UnB
collection Repositório Institucional da UnB
repository.name.fl_str_mv Repositório Institucional da UnB - Universidade de Brasília (UnB)
repository.mail.fl_str_mv repositorio@unb.br
_version_ 1810580675616571392