Problemas elípticos quasilineares com termos singulares, superlineares e convectivos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio.unb.br/handle/10482/8758 |
Resumo: | Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011. |
id |
UNB_da05ccacc111532f8c2dbeb14ded8628 |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/8758 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivosEquações diferenciais elípticasTeorias não-linearesTese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011.Neste trabalho, estabelecemos existência de soluções positivas para a classe de problemas <: _p u = g(x; u) + _f(x; u) + _V (x;ru) em u > 0 em e u = 0 em @; em que _p é o operador p-Laplaciano, 1 < p < 1; _ > 0 e _ _ 0 são parâmetros reais; g; f : _(0;1) ! [0;1) e V : _RN ! R são funções contínuas satisfazendo hipóteses adequadas e _ RN é um domínio limitado regular ou = RN. Quando = RN, a condição u(x) = 0 quando x 2 @ significa que u(x) ! 0 quando jxj ! 1. Nenhuma condição de monotonicidade e (ou) singularidade é exigida das nãolinearidades g e f, mas termos singulares e superlineares são incluídos em nossos resultados, que utilizam uma técnica de monotonização-regularização, métodos de sub e supersolução e argumentos de aproximação. As dificuldades decorrentes da presença do termo convectivo V e da perda de elipticidade do operador p-Laplaciano são contornadas por meio de princípios de comparação, um deles estabelecido neste trabalho. _________________________________________________________________________________ ABSTRACTIn this work, we establish the existence of positive solutions for the problem <: _p u = g(x; u) + _f(x; u) + _V (x;ru) in u > 0 in e u = 0 on @; where _p is the p-Laplacian operator, 1 < p < 1; _ and _ are real parameters; g; f : _ (0;1) ! [0;1) and V : _ RN ! R are continuous functions satisfying appropriated hypotheses and _ RN is a smooth bounded domain or = RN. When = RN, the condition u(x) = 0 on @ means that u(x) ! 0 when jxj ! 1. No monotonicity conditions and (or) the existence of singularity is required on the nonlinearities g and f, but singular and super linear terms are included in our results, which use a regularization and monotonicity technique, sub and super solutions methods and approximation arguments. The difficulties arising from the presence of the convective term V and the loss elipticity of the p-Laplacian operator are overcome by comparison principles, one of this principle is established in this work.Gonçalves, José Valdo AbreuSantos, Carlos Alberto Pereira dosRezende, Manuela Caetano Martins de2011-06-29T16:13:14Z2011-06-29T16:13:14Z2011-06-292011-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfREZENDE, Manuela Caetano Martins de. Problemas elípticos quasilineares com termos singulares, superlineares e convectivos. 2011. vi, 127 f. Tese (Doutorado em Matemática)-Universidade de Brasília, Brasília, 2011.http://repositorio.unb.br/handle/10482/8758info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2023-07-10T13:04:54Zoai:repositorio.unb.br:10482/8758Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2023-07-10T13:04:54Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
title |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
spellingShingle |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos Rezende, Manuela Caetano Martins de Equações diferenciais elípticas Teorias não-lineares |
title_short |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
title_full |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
title_fullStr |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
title_full_unstemmed |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
title_sort |
Problemas elípticos quasilineares com termos singulares, superlineares e convectivos |
author |
Rezende, Manuela Caetano Martins de |
author_facet |
Rezende, Manuela Caetano Martins de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonçalves, José Valdo Abreu Santos, Carlos Alberto Pereira dos |
dc.contributor.author.fl_str_mv |
Rezende, Manuela Caetano Martins de |
dc.subject.por.fl_str_mv |
Equações diferenciais elípticas Teorias não-lineares |
topic |
Equações diferenciais elípticas Teorias não-lineares |
description |
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-29T16:13:14Z 2011-06-29T16:13:14Z 2011-06-29 2011-02-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
REZENDE, Manuela Caetano Martins de. Problemas elípticos quasilineares com termos singulares, superlineares e convectivos. 2011. vi, 127 f. Tese (Doutorado em Matemática)-Universidade de Brasília, Brasília, 2011. http://repositorio.unb.br/handle/10482/8758 |
identifier_str_mv |
REZENDE, Manuela Caetano Martins de. Problemas elípticos quasilineares com termos singulares, superlineares e convectivos. 2011. vi, 127 f. Tese (Doutorado em Matemática)-Universidade de Brasília, Brasília, 2011. |
url |
http://repositorio.unb.br/handle/10482/8758 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1814508217376440320 |