Análise da demanda de acumuladores de energia utilizando séries temporais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Diversitas Journal |
Texto Completo: | https://diversitasjournal.com.br/diversitas_journal/article/view/2360 |
Resumo: | The use of statistical methods for forecasting demand helps managers in decision making, especially when it is necessary to carry out production planning. Therefore, it is extremely important to know the demand for a particular product, especially when it comes to lines of jobbing production systems in which transforming resources are shared between products. Following this idea, the manufacturing time of the products plays a relevant role both for the production programming to avoid incurring higher costs incurred in storage, obsolescence, among others. In order to overcome these difficulties by providing information on future sales of the product to the decision maker, this work uses time series of demand that were provided by the manufacturer of energy accumulators to forecast the demand for batteries. The study was aided by forecasting methods. Among these methods, the autoregressive integrated time series method – ARIMA – stands out, which was used and evaluated the accuracy of its forecasts. However, it was found that the additive Holt-Winters method presented the best fit for the data of this research. With the application of this methodology, it is expected to contribute to the efficiency of the programming of manufacturing processes. |
id |
UNEAL_206274908b953f1125fc39490e6c2756 |
---|---|
oai_identifier_str |
oai:ojs.emnuvens.com.br:article/2360 |
network_acronym_str |
UNEAL |
network_name_str |
Diversitas Journal |
repository_id_str |
|
spelling |
Análise da demanda de acumuladores de energia utilizando séries temporaisPrevisão da demandaMétodos de previsãoséries temporaisacumuladores de energiaDemand forecastingforecasting methodstemporal seriesenergy accumulatorsThe use of statistical methods for forecasting demand helps managers in decision making, especially when it is necessary to carry out production planning. Therefore, it is extremely important to know the demand for a particular product, especially when it comes to lines of jobbing production systems in which transforming resources are shared between products. Following this idea, the manufacturing time of the products plays a relevant role both for the production programming to avoid incurring higher costs incurred in storage, obsolescence, among others. In order to overcome these difficulties by providing information on future sales of the product to the decision maker, this work uses time series of demand that were provided by the manufacturer of energy accumulators to forecast the demand for batteries. The study was aided by forecasting methods. Among these methods, the autoregressive integrated time series method – ARIMA – stands out, which was used and evaluated the accuracy of its forecasts. However, it was found that the additive Holt-Winters method presented the best fit for the data of this research. With the application of this methodology, it is expected to contribute to the efficiency of the programming of manufacturing processes.O uso de métodos estatísticos para a previsão da demanda auxilia gestores na tomada de decisão, principalmente, quando é preciso realizar o planejamento da produção. Portanto, é de suma importância conhecer a demanda de determinado produto, especialmente, quando se trata de linhas de sistemas de produção do tipo jobbing no qual os recursos transformadores são compartilhados entre os produtos. Seguindo esta ideia, o tempo de fabricação dos produtos toma um papel relevante tanto para a programação da produção para se evitar incorrer em maiores custos despendidos da armazenagem, obsolescência, entre outros. Visando atingir essas dificuldades ao fornecer informações de vendas futuras do produto ao tomador de decisão, este trabalho utiliza séries temporais da demanda que foram fornecidas pela empresa fabricante de acumuladores de energia para a previsão da demanda de baterias. O estudo foi auxiliado por métodos de previsão. Entre esses métodos, destacam-se o método autorregressivo integrado de séries temporais – ARIMA – que foi utilizado e avaliada a precisão das suas previsões. Contudo, foi encontrado que o método de Holt-Winters aditivo apresentou o melhor ajuste para os dados desta pesquisa. Espera-se com a aplicação desta metodologia contribuir para a eficiência da programação dos processos de manufatura.Universidade Estadual de Alagoas - Eduneal2022-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/236010.48017/dj.v7i4.2360Diversitas Journal; v. 7 n. 4 (2022): A força do associativismo é sempre alternativa para o desenvolvimento2525-521510.48017/dj.v7i4reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALporhttps://diversitasjournal.com.br/diversitas_journal/article/view/2360/1839Copyright (c) 2022 Susane de Farias Gomeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCavalcante, Thiago SalesFeitosa, MatheusOrrego, Tulio FidelGomes, Susane de Farias2022-10-10T03:23:14Zoai:ojs.emnuvens.com.br:article/2360Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2023-01-13T09:47:37.356246Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false |
dc.title.none.fl_str_mv |
Análise da demanda de acumuladores de energia utilizando séries temporais |
title |
Análise da demanda de acumuladores de energia utilizando séries temporais |
spellingShingle |
Análise da demanda de acumuladores de energia utilizando séries temporais Cavalcante, Thiago Sales Previsão da demanda Métodos de previsão séries temporais acumuladores de energia Demand forecasting forecasting methods temporal series energy accumulators |
title_short |
Análise da demanda de acumuladores de energia utilizando séries temporais |
title_full |
Análise da demanda de acumuladores de energia utilizando séries temporais |
title_fullStr |
Análise da demanda de acumuladores de energia utilizando séries temporais |
title_full_unstemmed |
Análise da demanda de acumuladores de energia utilizando séries temporais |
title_sort |
Análise da demanda de acumuladores de energia utilizando séries temporais |
author |
Cavalcante, Thiago Sales |
author_facet |
Cavalcante, Thiago Sales Feitosa, Matheus Orrego, Tulio Fidel Gomes, Susane de Farias |
author_role |
author |
author2 |
Feitosa, Matheus Orrego, Tulio Fidel Gomes, Susane de Farias |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cavalcante, Thiago Sales Feitosa, Matheus Orrego, Tulio Fidel Gomes, Susane de Farias |
dc.subject.por.fl_str_mv |
Previsão da demanda Métodos de previsão séries temporais acumuladores de energia Demand forecasting forecasting methods temporal series energy accumulators |
topic |
Previsão da demanda Métodos de previsão séries temporais acumuladores de energia Demand forecasting forecasting methods temporal series energy accumulators |
description |
The use of statistical methods for forecasting demand helps managers in decision making, especially when it is necessary to carry out production planning. Therefore, it is extremely important to know the demand for a particular product, especially when it comes to lines of jobbing production systems in which transforming resources are shared between products. Following this idea, the manufacturing time of the products plays a relevant role both for the production programming to avoid incurring higher costs incurred in storage, obsolescence, among others. In order to overcome these difficulties by providing information on future sales of the product to the decision maker, this work uses time series of demand that were provided by the manufacturer of energy accumulators to forecast the demand for batteries. The study was aided by forecasting methods. Among these methods, the autoregressive integrated time series method – ARIMA – stands out, which was used and evaluated the accuracy of its forecasts. However, it was found that the additive Holt-Winters method presented the best fit for the data of this research. With the application of this methodology, it is expected to contribute to the efficiency of the programming of manufacturing processes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/2360 10.48017/dj.v7i4.2360 |
url |
https://diversitasjournal.com.br/diversitas_journal/article/view/2360 |
identifier_str_mv |
10.48017/dj.v7i4.2360 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/2360/1839 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Susane de Farias Gomes https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Susane de Farias Gomes https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
dc.source.none.fl_str_mv |
Diversitas Journal; v. 7 n. 4 (2022): A força do associativismo é sempre alternativa para o desenvolvimento 2525-5215 10.48017/dj.v7i4 reponame:Diversitas Journal instname:Universidade Estadual de Alagoas (UNEAL) instacron:UNEAL |
instname_str |
Universidade Estadual de Alagoas (UNEAL) |
instacron_str |
UNEAL |
institution |
UNEAL |
reponame_str |
Diversitas Journal |
collection |
Diversitas Journal |
repository.name.fl_str_mv |
Diversitas Journal - Universidade Estadual de Alagoas (UNEAL) |
repository.mail.fl_str_mv |
revistadiversitasjournal@gmail.com |
_version_ |
1797051274552672256 |