Análise da demanda de acumuladores de energia utilizando séries temporais

Detalhes bibliográficos
Autor(a) principal: Cavalcante, Thiago Sales
Data de Publicação: 2022
Outros Autores: Feitosa, Matheus, Orrego, Tulio Fidel, Gomes, Susane de Farias
Tipo de documento: Artigo
Idioma: por
Título da fonte: Diversitas Journal
Texto Completo: https://diversitasjournal.com.br/diversitas_journal/article/view/2360
Resumo: The use of statistical methods for forecasting demand helps managers in decision making, especially when it is necessary to carry out production planning. Therefore, it is extremely important to know the demand for a particular product, especially when it comes to lines of jobbing production systems in which transforming resources are shared between products. Following this idea, the manufacturing time of the products plays a relevant role both for the production programming to avoid incurring higher costs incurred in storage, obsolescence, among others. In order to overcome these difficulties by providing information on future sales of the product to the decision maker, this work uses time series of demand that were provided by the manufacturer of energy accumulators to forecast the demand for batteries. The study was aided by forecasting methods. Among these methods, the autoregressive integrated time series method – ARIMA – stands out, which was used and evaluated the accuracy of its forecasts. However, it was found that the additive Holt-Winters method presented the best fit for the data of this research. With the application of this methodology, it is expected to contribute to the efficiency of the programming of manufacturing processes.
id UNEAL_206274908b953f1125fc39490e6c2756
oai_identifier_str oai:ojs.emnuvens.com.br:article/2360
network_acronym_str UNEAL
network_name_str Diversitas Journal
repository_id_str
spelling Análise da demanda de acumuladores de energia utilizando séries temporaisPrevisão da demandaMétodos de previsãoséries temporaisacumuladores de energiaDemand forecastingforecasting methodstemporal seriesenergy accumulatorsThe use of statistical methods for forecasting demand helps managers in decision making, especially when it is necessary to carry out production planning. Therefore, it is extremely important to know the demand for a particular product, especially when it comes to lines of jobbing production systems in which transforming resources are shared between products. Following this idea, the manufacturing time of the products plays a relevant role both for the production programming to avoid incurring higher costs incurred in storage, obsolescence, among others. In order to overcome these difficulties by providing information on future sales of the product to the decision maker, this work uses time series of demand that were provided by the manufacturer of energy accumulators to forecast the demand for batteries. The study was aided by forecasting methods. Among these methods, the autoregressive integrated time series method – ARIMA – stands out, which was used and evaluated the accuracy of its forecasts. However, it was found that the additive Holt-Winters method presented the best fit for the data of this research. With the application of this methodology, it is expected to contribute to the efficiency of the programming of manufacturing processes.O uso de métodos estatísticos para a previsão da demanda auxilia gestores na tomada de decisão, principalmente, quando é preciso realizar o planejamento da produção. Portanto, é de suma importância conhecer a demanda de determinado produto, especialmente, quando se trata de linhas de sistemas de produção do tipo jobbing no qual os recursos transformadores são compartilhados entre os produtos. Seguindo esta ideia, o tempo de fabricação dos produtos toma um papel relevante tanto para a programação da produção para se evitar incorrer em maiores custos despendidos da armazenagem, obsolescência, entre outros. Visando atingir essas dificuldades ao fornecer informações de vendas futuras do produto ao tomador de decisão, este trabalho utiliza séries temporais da demanda que foram fornecidas pela empresa fabricante de acumuladores de energia para a previsão da demanda de baterias. O estudo foi auxiliado por métodos de previsão. Entre esses métodos, destacam-se o método autorregressivo integrado de séries temporais – ARIMA – que foi utilizado e avaliada a precisão das suas previsões. Contudo, foi encontrado que o método de Holt-Winters aditivo apresentou o melhor ajuste para os dados desta pesquisa. Espera-se com a aplicação desta metodologia contribuir para a eficiência da programação dos processos de manufatura.Universidade Estadual de Alagoas - Eduneal2022-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/236010.48017/dj.v7i4.2360Diversitas Journal; v. 7 n. 4 (2022): A força do associativismo é sempre alternativa para o desenvolvimento2525-521510.48017/dj.v7i4reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALporhttps://diversitasjournal.com.br/diversitas_journal/article/view/2360/1839Copyright (c) 2022 Susane de Farias Gomeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCavalcante, Thiago SalesFeitosa, MatheusOrrego, Tulio FidelGomes, Susane de Farias2022-10-10T03:23:14Zoai:ojs.emnuvens.com.br:article/2360Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2023-01-13T09:47:37.356246Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false
dc.title.none.fl_str_mv Análise da demanda de acumuladores de energia utilizando séries temporais
title Análise da demanda de acumuladores de energia utilizando séries temporais
spellingShingle Análise da demanda de acumuladores de energia utilizando séries temporais
Cavalcante, Thiago Sales
Previsão da demanda
Métodos de previsão
séries temporais
acumuladores de energia
Demand forecasting
forecasting methods
temporal series
energy accumulators
title_short Análise da demanda de acumuladores de energia utilizando séries temporais
title_full Análise da demanda de acumuladores de energia utilizando séries temporais
title_fullStr Análise da demanda de acumuladores de energia utilizando séries temporais
title_full_unstemmed Análise da demanda de acumuladores de energia utilizando séries temporais
title_sort Análise da demanda de acumuladores de energia utilizando séries temporais
author Cavalcante, Thiago Sales
author_facet Cavalcante, Thiago Sales
Feitosa, Matheus
Orrego, Tulio Fidel
Gomes, Susane de Farias
author_role author
author2 Feitosa, Matheus
Orrego, Tulio Fidel
Gomes, Susane de Farias
author2_role author
author
author
dc.contributor.author.fl_str_mv Cavalcante, Thiago Sales
Feitosa, Matheus
Orrego, Tulio Fidel
Gomes, Susane de Farias
dc.subject.por.fl_str_mv Previsão da demanda
Métodos de previsão
séries temporais
acumuladores de energia
Demand forecasting
forecasting methods
temporal series
energy accumulators
topic Previsão da demanda
Métodos de previsão
séries temporais
acumuladores de energia
Demand forecasting
forecasting methods
temporal series
energy accumulators
description The use of statistical methods for forecasting demand helps managers in decision making, especially when it is necessary to carry out production planning. Therefore, it is extremely important to know the demand for a particular product, especially when it comes to lines of jobbing production systems in which transforming resources are shared between products. Following this idea, the manufacturing time of the products plays a relevant role both for the production programming to avoid incurring higher costs incurred in storage, obsolescence, among others. In order to overcome these difficulties by providing information on future sales of the product to the decision maker, this work uses time series of demand that were provided by the manufacturer of energy accumulators to forecast the demand for batteries. The study was aided by forecasting methods. Among these methods, the autoregressive integrated time series method – ARIMA – stands out, which was used and evaluated the accuracy of its forecasts. However, it was found that the additive Holt-Winters method presented the best fit for the data of this research. With the application of this methodology, it is expected to contribute to the efficiency of the programming of manufacturing processes.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://diversitasjournal.com.br/diversitas_journal/article/view/2360
10.48017/dj.v7i4.2360
url https://diversitasjournal.com.br/diversitas_journal/article/view/2360
identifier_str_mv 10.48017/dj.v7i4.2360
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://diversitasjournal.com.br/diversitas_journal/article/view/2360/1839
dc.rights.driver.fl_str_mv Copyright (c) 2022 Susane de Farias Gomes
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Susane de Farias Gomes
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Alagoas - Eduneal
publisher.none.fl_str_mv Universidade Estadual de Alagoas - Eduneal
dc.source.none.fl_str_mv Diversitas Journal; v. 7 n. 4 (2022): A força do associativismo é sempre alternativa para o desenvolvimento
2525-5215
10.48017/dj.v7i4
reponame:Diversitas Journal
instname:Universidade Estadual de Alagoas (UNEAL)
instacron:UNEAL
instname_str Universidade Estadual de Alagoas (UNEAL)
instacron_str UNEAL
institution UNEAL
reponame_str Diversitas Journal
collection Diversitas Journal
repository.name.fl_str_mv Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)
repository.mail.fl_str_mv revistadiversitasjournal@gmail.com
_version_ 1797051274552672256