Development of a Machine Learning based model for early screening for oral cancer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Diversitas Journal |
Texto Completo: | https://diversitasjournal.com.br/diversitas_journal/article/view/2532 |
Resumo: | Oral Squamous Cell Carcinoma (OSCC) is the most frequent type of oral cancer, accounting for about 40% of malignant head and neck lesions. It ́s known that the favorable prognosis is associated with early diagnosis, since the survival rate increases as a function of the diagnosis in the early stages of the disease. Thus, the objective of this work was to implement and train a Machine Learning model that can help in the diagnosis of oral cancer. Through technologies such as artificial intelligence (AI) that can use images in their analyses, it ́s sought to improve the prognosis of oral cancer through its early detection. Using the branch of AI, Machine Learning and its subgroup Deep Learning, it becomes possible through Convolutional Neural Network (CNN) to perform an image screening of malignant and premalignant lesions, in order to identify the presence or not of oral cancer. The RNC structure is based on the MobileNet structure, which separates the images into fragments and after training, showed the identification of cancer in 91% of the images examined and of Leukoplakia in 84% of the analyzed images. |
id |
UNEAL_b5935147409f3fb0144cb32e0ee23ca9 |
---|---|
oai_identifier_str |
oai:ojs.diversitasjournal.com.br:article/2532 |
network_acronym_str |
UNEAL |
network_name_str |
Diversitas Journal |
repository_id_str |
|
spelling |
Development of a Machine Learning based model for early screening for oral cancerDesenvolvimento de um modelo baseado em Machine Learning para rastreamento precoce do câncer bucalCâncer de bocaInteligência artificialMachine learningOral cancerArtificial intelligenceMachine learningOral Squamous Cell Carcinoma (OSCC) is the most frequent type of oral cancer, accounting for about 40% of malignant head and neck lesions. It ́s known that the favorable prognosis is associated with early diagnosis, since the survival rate increases as a function of the diagnosis in the early stages of the disease. Thus, the objective of this work was to implement and train a Machine Learning model that can help in the diagnosis of oral cancer. Through technologies such as artificial intelligence (AI) that can use images in their analyses, it ́s sought to improve the prognosis of oral cancer through its early detection. Using the branch of AI, Machine Learning and its subgroup Deep Learning, it becomes possible through Convolutional Neural Network (CNN) to perform an image screening of malignant and premalignant lesions, in order to identify the presence or not of oral cancer. The RNC structure is based on the MobileNet structure, which separates the images into fragments and after training, showed the identification of cancer in 91% of the images examined and of Leukoplakia in 84% of the analyzed images.O carcinoma espinocelular da cavidade bucal (CECCB) é o tipo de câncer de boca mais frequente, representando cerca de 40% das lesões malignas de cabeça e pescoço. Sabe-se que o prognóstico favorável está associado ao diagnóstico precoce, visto que a taxa de sobrevida aumenta em função do diagnóstico nas fases iniciais na doença. Desta forma, o objetivo deste trabalho foi implementar e treinar um modelo de Machine Learning que possa auxiliar no diagnóstico do câncer de boca. Através das tecnologias como inteligência artificial (IA) que podem utilizar imagens em suas análises, busca-se melhorar o prognóstico do câncer de boca por meio da detecção precoce do mesmo. Utilizando o ramo da IA, a Machine Learning e seu subgrupo Deep Learning, torna-se possível por intermédio de Rede Neural Convolucional (RNC) realizar uma triagem de imagens de lesões malignas e pré-malignas, visando identificar a presença ou não do câncer de boca. A estrutura de RNC está baseada na estrutura de MobileNet, que separa as imagens em fragmentos e após treinamento, mostraram a identificação de câncer em 91% das imagens examinadas e de Leucoplasia em 84% das imagens analisadas.Universidade Estadual de Alagoas - Eduneal2023-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/253210.48017/dj.v8i3.2532Diversitas Journal; Vol. 8 No. 3 (2023): Education: a look to the future; 1488-1493Diversitas Journal; Vol. 8 Núm. 3 (2023): Educación: una mirada al futuro; 1488-1493Diversitas Journal; v. 8 n. 3 (2023): Educação: um olhar para o futuro; 1488-14932525-521510.48017/dj.v8i3reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALporenghttps://diversitasjournal.com.br/diversitas_journal/article/view/2532/2151https://diversitasjournal.com.br/diversitas_journal/article/view/2532/2152Copyright (c) 2023 Ivisson Alexandre Pereira da Silva, Catarina Rodrigues Rosa de Oliveira, José Marcos dos Santos Oliveira, Carlos Alberto Correia Lessa Filho, Sonia Maria Soares Ferreirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPereira da Silva, Ivisson AlexandreRodrigues Rosa de Oliveira, Catarinados Santos Oliveira, José MarcosCorreia Lessa Filho, Carlos AlbertoSoares Ferreira, Sonia Maria2023-10-06T13:53:14Zoai:ojs.diversitasjournal.com.br:article/2532Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2023-10-06T13:53:14Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false |
dc.title.none.fl_str_mv |
Development of a Machine Learning based model for early screening for oral cancer Desenvolvimento de um modelo baseado em Machine Learning para rastreamento precoce do câncer bucal |
title |
Development of a Machine Learning based model for early screening for oral cancer |
spellingShingle |
Development of a Machine Learning based model for early screening for oral cancer Pereira da Silva, Ivisson Alexandre Câncer de boca Inteligência artificial Machine learning Oral cancer Artificial intelligence Machine learning |
title_short |
Development of a Machine Learning based model for early screening for oral cancer |
title_full |
Development of a Machine Learning based model for early screening for oral cancer |
title_fullStr |
Development of a Machine Learning based model for early screening for oral cancer |
title_full_unstemmed |
Development of a Machine Learning based model for early screening for oral cancer |
title_sort |
Development of a Machine Learning based model for early screening for oral cancer |
author |
Pereira da Silva, Ivisson Alexandre |
author_facet |
Pereira da Silva, Ivisson Alexandre Rodrigues Rosa de Oliveira, Catarina dos Santos Oliveira, José Marcos Correia Lessa Filho, Carlos Alberto Soares Ferreira, Sonia Maria |
author_role |
author |
author2 |
Rodrigues Rosa de Oliveira, Catarina dos Santos Oliveira, José Marcos Correia Lessa Filho, Carlos Alberto Soares Ferreira, Sonia Maria |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Pereira da Silva, Ivisson Alexandre Rodrigues Rosa de Oliveira, Catarina dos Santos Oliveira, José Marcos Correia Lessa Filho, Carlos Alberto Soares Ferreira, Sonia Maria |
dc.subject.por.fl_str_mv |
Câncer de boca Inteligência artificial Machine learning Oral cancer Artificial intelligence Machine learning |
topic |
Câncer de boca Inteligência artificial Machine learning Oral cancer Artificial intelligence Machine learning |
description |
Oral Squamous Cell Carcinoma (OSCC) is the most frequent type of oral cancer, accounting for about 40% of malignant head and neck lesions. It ́s known that the favorable prognosis is associated with early diagnosis, since the survival rate increases as a function of the diagnosis in the early stages of the disease. Thus, the objective of this work was to implement and train a Machine Learning model that can help in the diagnosis of oral cancer. Through technologies such as artificial intelligence (AI) that can use images in their analyses, it ́s sought to improve the prognosis of oral cancer through its early detection. Using the branch of AI, Machine Learning and its subgroup Deep Learning, it becomes possible through Convolutional Neural Network (CNN) to perform an image screening of malignant and premalignant lesions, in order to identify the presence or not of oral cancer. The RNC structure is based on the MobileNet structure, which separates the images into fragments and after training, showed the identification of cancer in 91% of the images examined and of Leukoplakia in 84% of the analyzed images. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-03 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/2532 10.48017/dj.v8i3.2532 |
url |
https://diversitasjournal.com.br/diversitas_journal/article/view/2532 |
identifier_str_mv |
10.48017/dj.v8i3.2532 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/2532/2151 https://diversitasjournal.com.br/diversitas_journal/article/view/2532/2152 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
dc.source.none.fl_str_mv |
Diversitas Journal; Vol. 8 No. 3 (2023): Education: a look to the future; 1488-1493 Diversitas Journal; Vol. 8 Núm. 3 (2023): Educación: una mirada al futuro; 1488-1493 Diversitas Journal; v. 8 n. 3 (2023): Educação: um olhar para o futuro; 1488-1493 2525-5215 10.48017/dj.v8i3 reponame:Diversitas Journal instname:Universidade Estadual de Alagoas (UNEAL) instacron:UNEAL |
instname_str |
Universidade Estadual de Alagoas (UNEAL) |
instacron_str |
UNEAL |
institution |
UNEAL |
reponame_str |
Diversitas Journal |
collection |
Diversitas Journal |
repository.name.fl_str_mv |
Diversitas Journal - Universidade Estadual de Alagoas (UNEAL) |
repository.mail.fl_str_mv |
revistadiversitasjournal@gmail.com |
_version_ |
1797051273409724416 |