Development of a Machine Learning based model for early screening for oral cancer

Detalhes bibliográficos
Autor(a) principal: Pereira da Silva, Ivisson Alexandre
Data de Publicação: 2023
Outros Autores: Rodrigues Rosa de Oliveira, Catarina, dos Santos Oliveira, José Marcos, Correia Lessa Filho, Carlos Alberto, Soares Ferreira, Sonia Maria
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Diversitas Journal
Texto Completo: https://diversitasjournal.com.br/diversitas_journal/article/view/2532
Resumo: Oral Squamous Cell Carcinoma (OSCC) is the most frequent type of oral cancer, accounting for about 40% of malignant head and neck lesions. It ́s known that the favorable prognosis is associated with early diagnosis, since the survival rate increases as a function of the diagnosis in the early stages of the disease. Thus, the objective of this work was to implement and train a Machine Learning model that can help in the diagnosis of oral cancer. Through technologies such as artificial intelligence (AI) that can use images in their analyses, it ́s sought to improve the prognosis of oral cancer through its early detection. Using the branch of AI, Machine Learning and its subgroup Deep Learning, it becomes possible through Convolutional Neural Network (CNN) to perform an image screening of malignant and premalignant lesions, in order to identify the presence or not of oral cancer. The RNC structure is based on the MobileNet structure, which separates the images into fragments and after training, showed the identification of cancer in 91% of the images examined and of Leukoplakia in 84% of the analyzed images.
id UNEAL_b5935147409f3fb0144cb32e0ee23ca9
oai_identifier_str oai:ojs.diversitasjournal.com.br:article/2532
network_acronym_str UNEAL
network_name_str Diversitas Journal
repository_id_str
spelling Development of a Machine Learning based model for early screening for oral cancerDesenvolvimento de um modelo baseado em Machine Learning para rastreamento precoce do câncer bucalCâncer de bocaInteligência artificialMachine learningOral cancerArtificial intelligenceMachine learningOral Squamous Cell Carcinoma (OSCC) is the most frequent type of oral cancer, accounting for about 40% of malignant head and neck lesions. It ́s known that the favorable prognosis is associated with early diagnosis, since the survival rate increases as a function of the diagnosis in the early stages of the disease. Thus, the objective of this work was to implement and train a Machine Learning model that can help in the diagnosis of oral cancer. Through technologies such as artificial intelligence (AI) that can use images in their analyses, it ́s sought to improve the prognosis of oral cancer through its early detection. Using the branch of AI, Machine Learning and its subgroup Deep Learning, it becomes possible through Convolutional Neural Network (CNN) to perform an image screening of malignant and premalignant lesions, in order to identify the presence or not of oral cancer. The RNC structure is based on the MobileNet structure, which separates the images into fragments and after training, showed the identification of cancer in 91% of the images examined and of Leukoplakia in 84% of the analyzed images.O carcinoma espinocelular da cavidade bucal (CECCB) é o tipo de câncer de boca mais frequente, representando cerca de 40% das lesões malignas de cabeça e pescoço. Sabe-se que o prognóstico favorável está associado ao diagnóstico precoce, visto que a taxa de sobrevida aumenta em função do diagnóstico nas fases iniciais na doença. Desta forma, o objetivo deste trabalho foi implementar e treinar um modelo de Machine Learning que possa auxiliar no diagnóstico do câncer de boca. Através das tecnologias como inteligência artificial (IA) que podem utilizar imagens em suas análises, busca-se melhorar o prognóstico do câncer de boca por meio da detecção precoce do mesmo. Utilizando o ramo da IA, a Machine Learning e seu subgrupo Deep Learning, torna-se possível por intermédio de Rede Neural Convolucional (RNC) realizar uma triagem de imagens de lesões malignas e pré-malignas, visando identificar a presença ou não do câncer de boca. A estrutura de RNC está baseada na estrutura de MobileNet, que separa as imagens em fragmentos e após treinamento, mostraram a identificação de câncer em 91% das imagens examinadas e de Leucoplasia em 84% das imagens analisadas.Universidade Estadual de Alagoas - Eduneal2023-07-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/253210.48017/dj.v8i3.2532Diversitas Journal; Vol. 8 No. 3 (2023): Education: a look to the future; 1488-1493Diversitas Journal; Vol. 8 Núm. 3 (2023): Educación: una mirada al futuro; 1488-1493Diversitas Journal; v. 8 n. 3 (2023): Educação: um olhar para o futuro; 1488-14932525-521510.48017/dj.v8i3reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALporenghttps://diversitasjournal.com.br/diversitas_journal/article/view/2532/2151https://diversitasjournal.com.br/diversitas_journal/article/view/2532/2152Copyright (c) 2023 Ivisson Alexandre Pereira da Silva, Catarina Rodrigues Rosa de Oliveira, José Marcos dos Santos Oliveira, Carlos Alberto Correia Lessa Filho, Sonia Maria Soares Ferreirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPereira da Silva, Ivisson AlexandreRodrigues Rosa de Oliveira, Catarinados Santos Oliveira, José MarcosCorreia Lessa Filho, Carlos AlbertoSoares Ferreira, Sonia Maria2023-10-06T13:53:14Zoai:ojs.diversitasjournal.com.br:article/2532Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2023-10-06T13:53:14Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false
dc.title.none.fl_str_mv Development of a Machine Learning based model for early screening for oral cancer
Desenvolvimento de um modelo baseado em Machine Learning para rastreamento precoce do câncer bucal
title Development of a Machine Learning based model for early screening for oral cancer
spellingShingle Development of a Machine Learning based model for early screening for oral cancer
Pereira da Silva, Ivisson Alexandre
Câncer de boca
Inteligência artificial
Machine learning
Oral cancer
Artificial intelligence
Machine learning
title_short Development of a Machine Learning based model for early screening for oral cancer
title_full Development of a Machine Learning based model for early screening for oral cancer
title_fullStr Development of a Machine Learning based model for early screening for oral cancer
title_full_unstemmed Development of a Machine Learning based model for early screening for oral cancer
title_sort Development of a Machine Learning based model for early screening for oral cancer
author Pereira da Silva, Ivisson Alexandre
author_facet Pereira da Silva, Ivisson Alexandre
Rodrigues Rosa de Oliveira, Catarina
dos Santos Oliveira, José Marcos
Correia Lessa Filho, Carlos Alberto
Soares Ferreira, Sonia Maria
author_role author
author2 Rodrigues Rosa de Oliveira, Catarina
dos Santos Oliveira, José Marcos
Correia Lessa Filho, Carlos Alberto
Soares Ferreira, Sonia Maria
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Pereira da Silva, Ivisson Alexandre
Rodrigues Rosa de Oliveira, Catarina
dos Santos Oliveira, José Marcos
Correia Lessa Filho, Carlos Alberto
Soares Ferreira, Sonia Maria
dc.subject.por.fl_str_mv Câncer de boca
Inteligência artificial
Machine learning
Oral cancer
Artificial intelligence
Machine learning
topic Câncer de boca
Inteligência artificial
Machine learning
Oral cancer
Artificial intelligence
Machine learning
description Oral Squamous Cell Carcinoma (OSCC) is the most frequent type of oral cancer, accounting for about 40% of malignant head and neck lesions. It ́s known that the favorable prognosis is associated with early diagnosis, since the survival rate increases as a function of the diagnosis in the early stages of the disease. Thus, the objective of this work was to implement and train a Machine Learning model that can help in the diagnosis of oral cancer. Through technologies such as artificial intelligence (AI) that can use images in their analyses, it ́s sought to improve the prognosis of oral cancer through its early detection. Using the branch of AI, Machine Learning and its subgroup Deep Learning, it becomes possible through Convolutional Neural Network (CNN) to perform an image screening of malignant and premalignant lesions, in order to identify the presence or not of oral cancer. The RNC structure is based on the MobileNet structure, which separates the images into fragments and after training, showed the identification of cancer in 91% of the images examined and of Leukoplakia in 84% of the analyzed images.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://diversitasjournal.com.br/diversitas_journal/article/view/2532
10.48017/dj.v8i3.2532
url https://diversitasjournal.com.br/diversitas_journal/article/view/2532
identifier_str_mv 10.48017/dj.v8i3.2532
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://diversitasjournal.com.br/diversitas_journal/article/view/2532/2151
https://diversitasjournal.com.br/diversitas_journal/article/view/2532/2152
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Alagoas - Eduneal
publisher.none.fl_str_mv Universidade Estadual de Alagoas - Eduneal
dc.source.none.fl_str_mv Diversitas Journal; Vol. 8 No. 3 (2023): Education: a look to the future; 1488-1493
Diversitas Journal; Vol. 8 Núm. 3 (2023): Educación: una mirada al futuro; 1488-1493
Diversitas Journal; v. 8 n. 3 (2023): Educação: um olhar para o futuro; 1488-1493
2525-5215
10.48017/dj.v8i3
reponame:Diversitas Journal
instname:Universidade Estadual de Alagoas (UNEAL)
instacron:UNEAL
instname_str Universidade Estadual de Alagoas (UNEAL)
instacron_str UNEAL
institution UNEAL
reponame_str Diversitas Journal
collection Diversitas Journal
repository.name.fl_str_mv Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)
repository.mail.fl_str_mv revistadiversitasjournal@gmail.com
_version_ 1797051273409724416