Jaburetox: update on a urease-derived peptide

Detalhes bibliográficos
Autor(a) principal: Becker-Ritt,Arlete Beatriz
Data de Publicação: 2017
Outros Autores: Portugal,Camila Saretta, Carlini,Célia Regina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of venomous animals and toxins including tropical diseases (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992017000100211
Resumo: Abstract Urease from Canavalia ensiformis seeds was the first enzyme ever to be crystallized, in 1926. These proteins, found in plants, bacteria and fungi, present different biological properties including catalytic hydrolysis of urea, and also enzyme-independent activities, such as induction of exocytosis, pro-inflammatory effects, neurotoxicity, antifungal and insecticidal properties. Urease is toxic to insects and fungi per se but part of this toxicity relies on an internal peptide (~11 kDa), which is released upon digestion of the protein by insect enzymes. A recombinant form of this peptide, called jaburetox (JBTX), was constructed using jburell gene as a template. The peptide exhibits liposome disruption properties, and insecticidal and fungicidal activities. Here we review the known biological properties activities of JBTX, and comment on new ones not yet fully characterized. JBTX was able to cause mortality of Aedes aegypti larvae in a feeding assay whereas in a dose as low as of 0.1 μg it provoked death of Triatoma infestans bugs. JBTX (10−5-10−6 M) inhibits the growth of E. coli, P. aeruginosa and B. cereus after 24 h incubation. Multilamellar liposomes interacting with JBTX undergo reorganization of the membrane's lipids as detected by small angle X-ray scattering (SAXS) studies. Encapsulating JBTX into lipid nanoparticles led to an increase of the peptide's antifungal activity. Transgenic tobacco and sugarcane plants expressing the insecticidal peptide JBTX, showed increased resistance to attack of the insect pests Spodoptera frugiperda, Diatraea saccharalis and Telchin licus licus. Many questions remain unanswered; however, so far, JBTX has shown to be a versatile peptide that can be used against various insect and fungus species, and in new bacterial control strategies.
id UNESP-11_3264f9ed080378506781308a7532b0a7
oai_identifier_str oai:scielo:S1678-91992017000100211
network_acronym_str UNESP-11
network_name_str The Journal of venomous animals and toxins including tropical diseases (Online)
repository_id_str
spelling Jaburetox: update on a urease-derived peptidePeptideBacteriaMembranesNanoparticlesAbstract Urease from Canavalia ensiformis seeds was the first enzyme ever to be crystallized, in 1926. These proteins, found in plants, bacteria and fungi, present different biological properties including catalytic hydrolysis of urea, and also enzyme-independent activities, such as induction of exocytosis, pro-inflammatory effects, neurotoxicity, antifungal and insecticidal properties. Urease is toxic to insects and fungi per se but part of this toxicity relies on an internal peptide (~11 kDa), which is released upon digestion of the protein by insect enzymes. A recombinant form of this peptide, called jaburetox (JBTX), was constructed using jburell gene as a template. The peptide exhibits liposome disruption properties, and insecticidal and fungicidal activities. Here we review the known biological properties activities of JBTX, and comment on new ones not yet fully characterized. JBTX was able to cause mortality of Aedes aegypti larvae in a feeding assay whereas in a dose as low as of 0.1 μg it provoked death of Triatoma infestans bugs. JBTX (10−5-10−6 M) inhibits the growth of E. coli, P. aeruginosa and B. cereus after 24 h incubation. Multilamellar liposomes interacting with JBTX undergo reorganization of the membrane's lipids as detected by small angle X-ray scattering (SAXS) studies. Encapsulating JBTX into lipid nanoparticles led to an increase of the peptide's antifungal activity. Transgenic tobacco and sugarcane plants expressing the insecticidal peptide JBTX, showed increased resistance to attack of the insect pests Spodoptera frugiperda, Diatraea saccharalis and Telchin licus licus. Many questions remain unanswered; however, so far, JBTX has shown to be a versatile peptide that can be used against various insect and fungus species, and in new bacterial control strategies.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992017000100211Journal of Venomous Animals and Toxins including Tropical Diseases v.23 2017reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1186/s40409-017-0122-yinfo:eu-repo/semantics/openAccessBecker-Ritt,Arlete BeatrizPortugal,Camila SarettaCarlini,Célia Reginaeng2018-02-06T00:00:00Zoai:scielo:S1678-91992017000100211Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2018-02-06T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Jaburetox: update on a urease-derived peptide
title Jaburetox: update on a urease-derived peptide
spellingShingle Jaburetox: update on a urease-derived peptide
Becker-Ritt,Arlete Beatriz
Peptide
Bacteria
Membranes
Nanoparticles
title_short Jaburetox: update on a urease-derived peptide
title_full Jaburetox: update on a urease-derived peptide
title_fullStr Jaburetox: update on a urease-derived peptide
title_full_unstemmed Jaburetox: update on a urease-derived peptide
title_sort Jaburetox: update on a urease-derived peptide
author Becker-Ritt,Arlete Beatriz
author_facet Becker-Ritt,Arlete Beatriz
Portugal,Camila Saretta
Carlini,Célia Regina
author_role author
author2 Portugal,Camila Saretta
Carlini,Célia Regina
author2_role author
author
dc.contributor.author.fl_str_mv Becker-Ritt,Arlete Beatriz
Portugal,Camila Saretta
Carlini,Célia Regina
dc.subject.por.fl_str_mv Peptide
Bacteria
Membranes
Nanoparticles
topic Peptide
Bacteria
Membranes
Nanoparticles
description Abstract Urease from Canavalia ensiformis seeds was the first enzyme ever to be crystallized, in 1926. These proteins, found in plants, bacteria and fungi, present different biological properties including catalytic hydrolysis of urea, and also enzyme-independent activities, such as induction of exocytosis, pro-inflammatory effects, neurotoxicity, antifungal and insecticidal properties. Urease is toxic to insects and fungi per se but part of this toxicity relies on an internal peptide (~11 kDa), which is released upon digestion of the protein by insect enzymes. A recombinant form of this peptide, called jaburetox (JBTX), was constructed using jburell gene as a template. The peptide exhibits liposome disruption properties, and insecticidal and fungicidal activities. Here we review the known biological properties activities of JBTX, and comment on new ones not yet fully characterized. JBTX was able to cause mortality of Aedes aegypti larvae in a feeding assay whereas in a dose as low as of 0.1 μg it provoked death of Triatoma infestans bugs. JBTX (10−5-10−6 M) inhibits the growth of E. coli, P. aeruginosa and B. cereus after 24 h incubation. Multilamellar liposomes interacting with JBTX undergo reorganization of the membrane's lipids as detected by small angle X-ray scattering (SAXS) studies. Encapsulating JBTX into lipid nanoparticles led to an increase of the peptide's antifungal activity. Transgenic tobacco and sugarcane plants expressing the insecticidal peptide JBTX, showed increased resistance to attack of the insect pests Spodoptera frugiperda, Diatraea saccharalis and Telchin licus licus. Many questions remain unanswered; however, so far, JBTX has shown to be a versatile peptide that can be used against various insect and fungus species, and in new bacterial control strategies.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992017000100211
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992017000100211
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1186/s40409-017-0122-y
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
dc.source.none.fl_str_mv Journal of Venomous Animals and Toxins including Tropical Diseases v.23 2017
reponame:The Journal of venomous animals and toxins including tropical diseases (Online)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str The Journal of venomous animals and toxins including tropical diseases (Online)
collection The Journal of venomous animals and toxins including tropical diseases (Online)
repository.name.fl_str_mv The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv ||editorial@jvat.org.br
_version_ 1748958540111806464