Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications

Detalhes bibliográficos
Autor(a) principal: Fouda,Maged M. A.
Data de Publicação: 2021
Outros Autores: Abdel-Wahab,Mohammed, Mohammadien,Amal, Germoush,Mousa O., Sarhan,Moustafa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of venomous animals and toxins including tropical diseases (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100321
Resumo: Abstract Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.
id UNESP-11_3bbae3fcbc4dbefa6f816c33461f210e
oai_identifier_str oai:scielo:S1678-91992021000100321
network_acronym_str UNESP-11
network_name_str The Journal of venomous animals and toxins including tropical diseases (Online)
repository_id_str
spelling Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applicationsConus taeniatusConopeptidesConotoxinHPLCMass spectrometryCone snail venomAbstract Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100321Journal of Venomous Animals and Toxins including Tropical Diseases v.27 2021reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1590/1678-9199-jvatitd-2021-0023info:eu-repo/semantics/openAccessFouda,Maged M. A.Abdel-Wahab,MohammedMohammadien,AmalGermoush,Mousa O.Sarhan,Moustafaeng2021-10-15T00:00:00Zoai:scielo:S1678-91992021000100321Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2021-10-15T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
title Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
spellingShingle Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
Fouda,Maged M. A.
Conus taeniatus
Conopeptides
Conotoxin
HPLC
Mass spectrometry
Cone snail venom
title_short Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
title_full Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
title_fullStr Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
title_full_unstemmed Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
title_sort Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications
author Fouda,Maged M. A.
author_facet Fouda,Maged M. A.
Abdel-Wahab,Mohammed
Mohammadien,Amal
Germoush,Mousa O.
Sarhan,Moustafa
author_role author
author2 Abdel-Wahab,Mohammed
Mohammadien,Amal
Germoush,Mousa O.
Sarhan,Moustafa
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fouda,Maged M. A.
Abdel-Wahab,Mohammed
Mohammadien,Amal
Germoush,Mousa O.
Sarhan,Moustafa
dc.subject.por.fl_str_mv Conus taeniatus
Conopeptides
Conotoxin
HPLC
Mass spectrometry
Cone snail venom
topic Conus taeniatus
Conopeptides
Conotoxin
HPLC
Mass spectrometry
Cone snail venom
description Abstract Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100321
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100321
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-9199-jvatitd-2021-0023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
dc.source.none.fl_str_mv Journal of Venomous Animals and Toxins including Tropical Diseases v.27 2021
reponame:The Journal of venomous animals and toxins including tropical diseases (Online)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str The Journal of venomous animals and toxins including tropical diseases (Online)
collection The Journal of venomous animals and toxins including tropical diseases (Online)
repository.name.fl_str_mv The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv ||editorial@jvat.org.br
_version_ 1748958541070204928