Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom

Detalhes bibliográficos
Autor(a) principal: Fu,Ying
Data de Publicação: 2022
Outros Autores: Zhang,Yu, Ju,Shuang, Ma,Bokai, Huang,Wenwen, Luo,Sulan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of venomous animals and toxins including tropical diseases (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992022000100313
Resumo: Abstract Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.
id UNESP-11_f2e5bc0ae3530ddca624d91a21766b29
oai_identifier_str oai:scielo:S1678-91992022000100313
network_acronym_str UNESP-11
network_name_str The Journal of venomous animals and toxins including tropical diseases (Online)
repository_id_str
spelling Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venomConopeptidesDisulfide-poor conopeptidesConus marmoreusnAChRCone snailConus venomAbstract Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992022000100313Journal of Venomous Animals and Toxins including Tropical Diseases v.28 2022reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1590/1678-9199-jvatitd-2021-0116info:eu-repo/semantics/openAccessFu,YingZhang,YuJu,ShuangMa,BokaiHuang,WenwenLuo,Sulaneng2022-05-16T00:00:00Zoai:scielo:S1678-91992022000100313Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2022-05-16T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
title Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
spellingShingle Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
Fu,Ying
Conopeptides
Disulfide-poor conopeptides
Conus marmoreus
nAChR
Cone snail
Conus venom
title_short Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
title_full Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
title_fullStr Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
title_full_unstemmed Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
title_sort Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom
author Fu,Ying
author_facet Fu,Ying
Zhang,Yu
Ju,Shuang
Ma,Bokai
Huang,Wenwen
Luo,Sulan
author_role author
author2 Zhang,Yu
Ju,Shuang
Ma,Bokai
Huang,Wenwen
Luo,Sulan
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Fu,Ying
Zhang,Yu
Ju,Shuang
Ma,Bokai
Huang,Wenwen
Luo,Sulan
dc.subject.por.fl_str_mv Conopeptides
Disulfide-poor conopeptides
Conus marmoreus
nAChR
Cone snail
Conus venom
topic Conopeptides
Disulfide-poor conopeptides
Conus marmoreus
nAChR
Cone snail
Conus venom
description Abstract Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992022000100313
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992022000100313
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-9199-jvatitd-2021-0116
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
dc.source.none.fl_str_mv Journal of Venomous Animals and Toxins including Tropical Diseases v.28 2022
reponame:The Journal of venomous animals and toxins including tropical diseases (Online)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str The Journal of venomous animals and toxins including tropical diseases (Online)
collection The Journal of venomous animals and toxins including tropical diseases (Online)
repository.name.fl_str_mv The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv ||editorial@jvat.org.br
_version_ 1748958541116342272