Another Case of Epistemological Obstacles: the principle of permanence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Bolema: Boletim de Educação Matemática |
Texto Completo: | https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527 |
Resumo: | The negative numbers constituted a conceptual problem for mathematics as long as quantities and numbers had not been separated epistemologically and as mathematics was understood to be the science of quantities. The solution of the mathematical problem was achieved in the 19th century in a part of the mathematical community, as an element of the rise of the new paradigm of mathematics, overcoming the traditional substantialist ontology and establishing the relationist epistemology, based on the algebrisation of mathematics. The group of mathematics teachers at secondary schools was not prepared in its majority, however, to accept the new paradigm. It was in particular the principle of permanence, which proved to be an epistemological obstacle for them. They continued to adhere to the Platonist view, relying on geometrical justifications, maintaining that any mathematical statement should be capable of being demonstrated. Disguising their own obstacles to be those of the students who would accept nothing arbitrary in mathematics but rather absolute logical consistency, these teachers turned the principle of permanence to constitute an “obstacle didactogène” as Brousseau had called those obstacles caused by characteristics of teaching. Keywords: negative numbers, epistemological obstacles, principle of permanence |
id |
UNESP-14_492811dff54d7f726e67585e94125ad1 |
---|---|
oai_identifier_str |
oai:periodicos.rc.biblioteca.unesp.br:article/1527 |
network_acronym_str |
UNESP-14 |
network_name_str |
Bolema: Boletim de Educação Matemática |
repository_id_str |
|
spelling |
Another Case of Epistemological Obstacles: the principle of permanenceUm Outro Caso de Obstáculos Epistemológicos: o princípio de permanênciaThe negative numbers constituted a conceptual problem for mathematics as long as quantities and numbers had not been separated epistemologically and as mathematics was understood to be the science of quantities. The solution of the mathematical problem was achieved in the 19th century in a part of the mathematical community, as an element of the rise of the new paradigm of mathematics, overcoming the traditional substantialist ontology and establishing the relationist epistemology, based on the algebrisation of mathematics. The group of mathematics teachers at secondary schools was not prepared in its majority, however, to accept the new paradigm. It was in particular the principle of permanence, which proved to be an epistemological obstacle for them. They continued to adhere to the Platonist view, relying on geometrical justifications, maintaining that any mathematical statement should be capable of being demonstrated. Disguising their own obstacles to be those of the students who would accept nothing arbitrary in mathematics but rather absolute logical consistency, these teachers turned the principle of permanence to constitute an “obstacle didactogène” as Brousseau had called those obstacles caused by characteristics of teaching. Keywords: negative numbers, epistemological obstacles, principle of permanenceOs números negativos constituíram um problema conceitual para a matemática enquanto grandezas e números não foram separados epistemologicamente e a definição da matemática era a ciência das quantidades. A solução do problema conceitual aconteceu no século XIX numa parte da comunidadematemática, como componente do surgimento do novo paradigma da matemática, vencendo a ontologia substancialista e estabelecendo a visão relacionista, baseado na algebrização da matemática. Porém, o corpo professoral nas escolas secundárias não quis, na sua maioria, adotar o novo paradigma, o princípio de permanência, erigindo-se como obstáculo epistemológico para eles. Eles continuaram a aderir à visão platônica, baseando-se em justificações geométricas, sustentando que cada afirmação deve ser demonstrável. Pretendendo que os próprios obstáculos fossem o interesse dos alunos em achar na matemática nada de arbitrário mas sim absoluta conseqüência lógica, eles tornaram o princípio de permanência um obstáculo “didactogênico”, como chamou Brousseau os obstáculos causados pelas caraterísticas do ensino. Palavras-Chave: Números negativos, obstáculos epistemológicos, princípio de permanênciaUNESP - Campus de Rio Claro - Instituto de Geociências e Ciências Exatas2008-08-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527Bolema: Boletim de Educação Matemática; v. 20 n. 28 (2007); 1-201980-44150103-636Xreponame:Bolema: Boletim de Educação Matemáticainstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporhttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527/1308Schubring, Gertinfo:eu-repo/semantics/openAccess2015-09-29T15:03:13Zoai:periodicos.rc.biblioteca.unesp.br:article/1527Revistahttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/PUBhttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/oaibolema.contato@gmail.com||romiarka@gmail.com1980-44150103-636Xopendoar:2015-09-29T15:03:13Bolema: Boletim de Educação Matemática - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Another Case of Epistemological Obstacles: the principle of permanence Um Outro Caso de Obstáculos Epistemológicos: o princípio de permanência |
title |
Another Case of Epistemological Obstacles: the principle of permanence |
spellingShingle |
Another Case of Epistemological Obstacles: the principle of permanence Schubring, Gert |
title_short |
Another Case of Epistemological Obstacles: the principle of permanence |
title_full |
Another Case of Epistemological Obstacles: the principle of permanence |
title_fullStr |
Another Case of Epistemological Obstacles: the principle of permanence |
title_full_unstemmed |
Another Case of Epistemological Obstacles: the principle of permanence |
title_sort |
Another Case of Epistemological Obstacles: the principle of permanence |
author |
Schubring, Gert |
author_facet |
Schubring, Gert |
author_role |
author |
dc.contributor.author.fl_str_mv |
Schubring, Gert |
description |
The negative numbers constituted a conceptual problem for mathematics as long as quantities and numbers had not been separated epistemologically and as mathematics was understood to be the science of quantities. The solution of the mathematical problem was achieved in the 19th century in a part of the mathematical community, as an element of the rise of the new paradigm of mathematics, overcoming the traditional substantialist ontology and establishing the relationist epistemology, based on the algebrisation of mathematics. The group of mathematics teachers at secondary schools was not prepared in its majority, however, to accept the new paradigm. It was in particular the principle of permanence, which proved to be an epistemological obstacle for them. They continued to adhere to the Platonist view, relying on geometrical justifications, maintaining that any mathematical statement should be capable of being demonstrated. Disguising their own obstacles to be those of the students who would accept nothing arbitrary in mathematics but rather absolute logical consistency, these teachers turned the principle of permanence to constitute an “obstacle didactogène” as Brousseau had called those obstacles caused by characteristics of teaching. Keywords: negative numbers, epistemological obstacles, principle of permanence |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527 |
url |
https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527/1308 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UNESP - Campus de Rio Claro - Instituto de Geociências e Ciências Exatas |
publisher.none.fl_str_mv |
UNESP - Campus de Rio Claro - Instituto de Geociências e Ciências Exatas |
dc.source.none.fl_str_mv |
Bolema: Boletim de Educação Matemática; v. 20 n. 28 (2007); 1-20 1980-4415 0103-636X reponame:Bolema: Boletim de Educação Matemática instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Bolema: Boletim de Educação Matemática |
collection |
Bolema: Boletim de Educação Matemática |
repository.name.fl_str_mv |
Bolema: Boletim de Educação Matemática - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
bolema.contato@gmail.com||romiarka@gmail.com |
_version_ |
1800215873104904192 |