Another Case of Epistemological Obstacles: the principle of permanence

Detalhes bibliográficos
Autor(a) principal: Schubring, Gert
Data de Publicação: 2008
Tipo de documento: Artigo
Idioma: por
Título da fonte: Bolema: Boletim de Educação Matemática
Texto Completo: https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527
Resumo: The negative numbers constituted a conceptual problem for mathematics as long as quantities and numbers had not been separated epistemologically and as mathematics was understood to be the science of quantities. The solution of the mathematical problem was achieved in the 19th century in a part of the mathematical community, as an element of the rise of the new paradigm of mathematics, overcoming the traditional substantialist ontology and establishing the relationist epistemology, based on the algebrisation of mathematics. The group of mathematics teachers at secondary schools was not prepared in its majority, however, to accept the new paradigm. It was in particular the principle of permanence, which proved to be an epistemological obstacle for them. They continued to adhere to the Platonist view, relying on geometrical justifications, maintaining that any mathematical statement should be capable of being demonstrated. Disguising their own obstacles to be those of the students who would accept nothing arbitrary in mathematics but rather absolute logical consistency, these teachers turned the principle of permanence to constitute an “obstacle didactogène” as Brousseau had called those obstacles caused by characteristics of teaching. Keywords: negative numbers, epistemological obstacles, principle of permanence
id UNESP-14_492811dff54d7f726e67585e94125ad1
oai_identifier_str oai:periodicos.rc.biblioteca.unesp.br:article/1527
network_acronym_str UNESP-14
network_name_str Bolema: Boletim de Educação Matemática
repository_id_str
spelling Another Case of Epistemological Obstacles: the principle of permanenceUm Outro Caso de Obstáculos Epistemológicos: o princípio de permanênciaThe negative numbers constituted a conceptual problem for mathematics as long as quantities and numbers had not been separated epistemologically and as mathematics was understood to be the science of quantities. The solution of the mathematical problem was achieved in the 19th century in a part of the mathematical community, as an element of the rise of the new paradigm of mathematics, overcoming the traditional substantialist ontology and establishing the relationist epistemology, based on the algebrisation of mathematics. The group of mathematics teachers at secondary schools was not prepared in its majority, however, to accept the new paradigm. It was in particular the principle of permanence, which proved to be an epistemological obstacle for them. They continued to adhere to the Platonist view, relying on geometrical justifications, maintaining that any mathematical statement should be capable of being demonstrated. Disguising their own obstacles to be those of the students who would accept nothing arbitrary in mathematics but rather absolute logical consistency, these teachers turned the principle of permanence to constitute an “obstacle didactogène” as Brousseau had called those obstacles caused by characteristics of teaching. Keywords: negative numbers, epistemological obstacles, principle of permanenceOs números negativos constituíram um problema conceitual para a matemática enquanto grandezas e números não foram separados epistemologicamente e a definição da matemática era a ciência das quantidades. A solução do problema conceitual aconteceu no século XIX numa parte da comunidadematemática, como componente do surgimento do novo paradigma da matemática, vencendo a ontologia substancialista e estabelecendo a visão relacionista, baseado na algebrização da matemática. Porém, o corpo professoral nas escolas secundárias não quis, na sua maioria, adotar o novo paradigma, o princípio de permanência, erigindo-se como obstáculo epistemológico para eles. Eles continuaram a aderir à visão platônica, baseando-se em justificações geométricas, sustentando que cada afirmação deve ser demonstrável. Pretendendo que os próprios obstáculos fossem o interesse dos alunos em achar na matemática nada de arbitrário mas sim absoluta conseqüência lógica, eles tornaram o princípio de permanência um obstáculo “didactogênico”, como chamou Brousseau os obstáculos causados pelas caraterísticas do ensino. Palavras-Chave: Números negativos, obstáculos epistemológicos, princípio de permanênciaUNESP - Campus de Rio Claro - Instituto de Geociências e Ciências Exatas2008-08-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527Bolema: Boletim de Educação Matemática; v. 20 n. 28 (2007); 1-201980-44150103-636Xreponame:Bolema: Boletim de Educação Matemáticainstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporhttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527/1308Schubring, Gertinfo:eu-repo/semantics/openAccess2015-09-29T15:03:13Zoai:periodicos.rc.biblioteca.unesp.br:article/1527Revistahttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/PUBhttps://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/oaibolema.contato@gmail.com||romiarka@gmail.com1980-44150103-636Xopendoar:2015-09-29T15:03:13Bolema: Boletim de Educação Matemática - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Another Case of Epistemological Obstacles: the principle of permanence
Um Outro Caso de Obstáculos Epistemológicos: o princípio de permanência
title Another Case of Epistemological Obstacles: the principle of permanence
spellingShingle Another Case of Epistemological Obstacles: the principle of permanence
Schubring, Gert
title_short Another Case of Epistemological Obstacles: the principle of permanence
title_full Another Case of Epistemological Obstacles: the principle of permanence
title_fullStr Another Case of Epistemological Obstacles: the principle of permanence
title_full_unstemmed Another Case of Epistemological Obstacles: the principle of permanence
title_sort Another Case of Epistemological Obstacles: the principle of permanence
author Schubring, Gert
author_facet Schubring, Gert
author_role author
dc.contributor.author.fl_str_mv Schubring, Gert
description The negative numbers constituted a conceptual problem for mathematics as long as quantities and numbers had not been separated epistemologically and as mathematics was understood to be the science of quantities. The solution of the mathematical problem was achieved in the 19th century in a part of the mathematical community, as an element of the rise of the new paradigm of mathematics, overcoming the traditional substantialist ontology and establishing the relationist epistemology, based on the algebrisation of mathematics. The group of mathematics teachers at secondary schools was not prepared in its majority, however, to accept the new paradigm. It was in particular the principle of permanence, which proved to be an epistemological obstacle for them. They continued to adhere to the Platonist view, relying on geometrical justifications, maintaining that any mathematical statement should be capable of being demonstrated. Disguising their own obstacles to be those of the students who would accept nothing arbitrary in mathematics but rather absolute logical consistency, these teachers turned the principle of permanence to constitute an “obstacle didactogène” as Brousseau had called those obstacles caused by characteristics of teaching. Keywords: negative numbers, epistemological obstacles, principle of permanence
publishDate 2008
dc.date.none.fl_str_mv 2008-08-22
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527
url https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.periodicos.rc.biblioteca.unesp.br/index.php/bolema/article/view/1527/1308
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UNESP - Campus de Rio Claro - Instituto de Geociências e Ciências Exatas
publisher.none.fl_str_mv UNESP - Campus de Rio Claro - Instituto de Geociências e Ciências Exatas
dc.source.none.fl_str_mv Bolema: Boletim de Educação Matemática; v. 20 n. 28 (2007); 1-20
1980-4415
0103-636X
reponame:Bolema: Boletim de Educação Matemática
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Bolema: Boletim de Educação Matemática
collection Bolema: Boletim de Educação Matemática
repository.name.fl_str_mv Bolema: Boletim de Educação Matemática - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv bolema.contato@gmail.com||romiarka@gmail.com
_version_ 1800215873104904192