Use of multivariate statistics to predict the physicochemical quality of milk

Detalhes bibliográficos
Autor(a) principal: Pinheiro, Lenara Oliveira
Data de Publicação: 2020
Outros Autores: Júnior, Mário Roberto, Lima, Clara Mariana Gonçalves, Sousa, Heliara Caires, Pagnossa, Jorge Pamplona, Santos, Leandro Soares, Fernandes, Sérgio Augusto de Albuquerque
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/2808
Resumo: Multivariate analysis involves the application of statistical and computational methods to predict responses. Among the various methods of statistical analysis multivariate, the analysis by main components is highlighted to predict the composition and quality of food in general. The objective of this work was to characterize the milk producers of the municipality of Itapetinga-BA, using principal component analysis. Twenty samples of raw milk were used, collected at the reception of the dairy located in Itapetinga-BA. The variables analyzed were: fat, density, defatted dry extract, protein and lactose. The first two main components explained 87.24% of the total variation. It was verified the formation of different groups distributed in the four quadrants of the system. First quadrant stood out from the others by forming a group composed of ten producers in the analyzed region, characterized by presenting samples with higher lactose content and lower fat content in milk. The lactose and fat variables are of greater importance in the characterization of milk.
id UNIFEI_0c6ba9c1e86f782ef9b0a3d6321ef194
oai_identifier_str oai:ojs.pkp.sfu.ca:article/2808
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Use of multivariate statistics to predict the physicochemical quality of milkUso de estadísticas multivariadas para predecir la calidad fisicoquímica de la lecheUtilização de estatística multivariada na predição da qualidade físico-química de leiteMétodosComponentes principaisProdutoresMatriz de origem animal.MétodosComponentes principalesProductoresMatriz de origen animal.MethodsPrincipal componentsProducersAnimal origin matrix.Multivariate analysis involves the application of statistical and computational methods to predict responses. Among the various methods of statistical analysis multivariate, the analysis by main components is highlighted to predict the composition and quality of food in general. The objective of this work was to characterize the milk producers of the municipality of Itapetinga-BA, using principal component analysis. Twenty samples of raw milk were used, collected at the reception of the dairy located in Itapetinga-BA. The variables analyzed were: fat, density, defatted dry extract, protein and lactose. The first two main components explained 87.24% of the total variation. It was verified the formation of different groups distributed in the four quadrants of the system. First quadrant stood out from the others by forming a group composed of ten producers in the analyzed region, characterized by presenting samples with higher lactose content and lower fat content in milk. The lactose and fat variables are of greater importance in the characterization of milk.El análisis multivariado implica la aplicación de métodos estadísticos y computacionales para predecir respuestas. Entre los diversos métodos de análisis estadístico multivariante, se destaca el análisis por componentes principales para predecir la composición y calidad de los alimentos en general. El objetivo de este estudio fue caracterizar a los productores de leche en el municipio de Itapetinga-BA, utilizando el análisis de componentes principales. Se utilizaron veinte muestras de leche cruda, recolectadas en la recepción de la lechería ubicada en Itapetinga-BA. Las variables analizadas fueron: grasa, densidad, extracto seco desgrasado, proteínas y lactosa. Los primeros dos componentes principales explicaron el 87.24% de la variación total. Se verificó la formación de diferentes grupos distribuidos en los cuatro cuadrantes del sistema. El cuadrante I se destacó de los demás por formar un grupo compuesto por diez productores en la región analizada, caracterizado por presentar muestras con un mayor contenido de lactosa y un menor contenido de grasa en la leche. Las variables lactosa y grasa son más importantes en la caracterización de la leche.A análise multivariada envolve a aplicação de métodos estatísticos e computacionais para predizer respostas. Dentre os diversos métodos de análise estatística multivariada, a análise por componentes principais recebe destaque para efetuar a previsão da composição e qualidade de alimentos em geral. Objetivou-se, com o presente trabalho, caracterizar os produtores de leite do município de Itapetinga-BA, utilizando análise de componentes principais. Foram utilizadas 20 amostras de leite cru, coletadas na recepção do laticínio localizado em Itapetinga-BA. As variáveis analisadas foram: gordura, densidade, extrato seco desengordurado, proteína e lactose. Os dois primeiros componentes principais explicaram 87,24% da variação total. Verificou-se a formação de diferentes grupos distribuídos nos quatro quadrantes do sistema. O quadrante I destacou-se dos demais por formar um grupo composto por dez produtores da região analisada, caracterizando-se por apresentar amostras com maior teor de lactose e menor teor de gordura no leite. As variáveis lactose e gordura apresentam maior importância na caracterização do leite.Research, Society and Development2020-03-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/280810.33448/rsd-v9i4.2808Research, Society and Development; Vol. 9 No. 4; e41942808Research, Society and Development; Vol. 9 Núm. 4; e41942808Research, Society and Development; v. 9 n. 4; e419428082525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/2808/3090Copyright (c) 2020 Lenara Oliveira Pinheiroinfo:eu-repo/semantics/openAccessPinheiro, Lenara OliveiraJúnior, Mário RobertoLima, Clara Mariana GonçalvesSousa, Heliara CairesPagnossa, Jorge PamplonaSantos, Leandro SoaresFernandes, Sérgio Augusto de Albuquerque2020-08-20T18:07:16Zoai:ojs.pkp.sfu.ca:article/2808Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:27:14.942118Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Use of multivariate statistics to predict the physicochemical quality of milk
Uso de estadísticas multivariadas para predecir la calidad fisicoquímica de la leche
Utilização de estatística multivariada na predição da qualidade físico-química de leite
title Use of multivariate statistics to predict the physicochemical quality of milk
spellingShingle Use of multivariate statistics to predict the physicochemical quality of milk
Pinheiro, Lenara Oliveira
Métodos
Componentes principais
Produtores
Matriz de origem animal.
Métodos
Componentes principales
Productores
Matriz de origen animal.
Methods
Principal components
Producers
Animal origin matrix.
title_short Use of multivariate statistics to predict the physicochemical quality of milk
title_full Use of multivariate statistics to predict the physicochemical quality of milk
title_fullStr Use of multivariate statistics to predict the physicochemical quality of milk
title_full_unstemmed Use of multivariate statistics to predict the physicochemical quality of milk
title_sort Use of multivariate statistics to predict the physicochemical quality of milk
author Pinheiro, Lenara Oliveira
author_facet Pinheiro, Lenara Oliveira
Júnior, Mário Roberto
Lima, Clara Mariana Gonçalves
Sousa, Heliara Caires
Pagnossa, Jorge Pamplona
Santos, Leandro Soares
Fernandes, Sérgio Augusto de Albuquerque
author_role author
author2 Júnior, Mário Roberto
Lima, Clara Mariana Gonçalves
Sousa, Heliara Caires
Pagnossa, Jorge Pamplona
Santos, Leandro Soares
Fernandes, Sérgio Augusto de Albuquerque
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pinheiro, Lenara Oliveira
Júnior, Mário Roberto
Lima, Clara Mariana Gonçalves
Sousa, Heliara Caires
Pagnossa, Jorge Pamplona
Santos, Leandro Soares
Fernandes, Sérgio Augusto de Albuquerque
dc.subject.por.fl_str_mv Métodos
Componentes principais
Produtores
Matriz de origem animal.
Métodos
Componentes principales
Productores
Matriz de origen animal.
Methods
Principal components
Producers
Animal origin matrix.
topic Métodos
Componentes principais
Produtores
Matriz de origem animal.
Métodos
Componentes principales
Productores
Matriz de origen animal.
Methods
Principal components
Producers
Animal origin matrix.
description Multivariate analysis involves the application of statistical and computational methods to predict responses. Among the various methods of statistical analysis multivariate, the analysis by main components is highlighted to predict the composition and quality of food in general. The objective of this work was to characterize the milk producers of the municipality of Itapetinga-BA, using principal component analysis. Twenty samples of raw milk were used, collected at the reception of the dairy located in Itapetinga-BA. The variables analyzed were: fat, density, defatted dry extract, protein and lactose. The first two main components explained 87.24% of the total variation. It was verified the formation of different groups distributed in the four quadrants of the system. First quadrant stood out from the others by forming a group composed of ten producers in the analyzed region, characterized by presenting samples with higher lactose content and lower fat content in milk. The lactose and fat variables are of greater importance in the characterization of milk.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/2808
10.33448/rsd-v9i4.2808
url https://rsdjournal.org/index.php/rsd/article/view/2808
identifier_str_mv 10.33448/rsd-v9i4.2808
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/2808/3090
dc.rights.driver.fl_str_mv Copyright (c) 2020 Lenara Oliveira Pinheiro
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Lenara Oliveira Pinheiro
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 4; e41942808
Research, Society and Development; Vol. 9 Núm. 4; e41942808
Research, Society and Development; v. 9 n. 4; e41942808
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052734773395456