Use of multivariate statistics to predict the physicochemical quality of milk
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/2808 |
Resumo: | Multivariate analysis involves the application of statistical and computational methods to predict responses. Among the various methods of statistical analysis multivariate, the analysis by main components is highlighted to predict the composition and quality of food in general. The objective of this work was to characterize the milk producers of the municipality of Itapetinga-BA, using principal component analysis. Twenty samples of raw milk were used, collected at the reception of the dairy located in Itapetinga-BA. The variables analyzed were: fat, density, defatted dry extract, protein and lactose. The first two main components explained 87.24% of the total variation. It was verified the formation of different groups distributed in the four quadrants of the system. First quadrant stood out from the others by forming a group composed of ten producers in the analyzed region, characterized by presenting samples with higher lactose content and lower fat content in milk. The lactose and fat variables are of greater importance in the characterization of milk. |
id |
UNIFEI_0c6ba9c1e86f782ef9b0a3d6321ef194 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/2808 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Use of multivariate statistics to predict the physicochemical quality of milkUso de estadísticas multivariadas para predecir la calidad fisicoquímica de la lecheUtilização de estatística multivariada na predição da qualidade físico-química de leiteMétodosComponentes principaisProdutoresMatriz de origem animal.MétodosComponentes principalesProductoresMatriz de origen animal.MethodsPrincipal componentsProducersAnimal origin matrix.Multivariate analysis involves the application of statistical and computational methods to predict responses. Among the various methods of statistical analysis multivariate, the analysis by main components is highlighted to predict the composition and quality of food in general. The objective of this work was to characterize the milk producers of the municipality of Itapetinga-BA, using principal component analysis. Twenty samples of raw milk were used, collected at the reception of the dairy located in Itapetinga-BA. The variables analyzed were: fat, density, defatted dry extract, protein and lactose. The first two main components explained 87.24% of the total variation. It was verified the formation of different groups distributed in the four quadrants of the system. First quadrant stood out from the others by forming a group composed of ten producers in the analyzed region, characterized by presenting samples with higher lactose content and lower fat content in milk. The lactose and fat variables are of greater importance in the characterization of milk.El análisis multivariado implica la aplicación de métodos estadísticos y computacionales para predecir respuestas. Entre los diversos métodos de análisis estadístico multivariante, se destaca el análisis por componentes principales para predecir la composición y calidad de los alimentos en general. El objetivo de este estudio fue caracterizar a los productores de leche en el municipio de Itapetinga-BA, utilizando el análisis de componentes principales. Se utilizaron veinte muestras de leche cruda, recolectadas en la recepción de la lechería ubicada en Itapetinga-BA. Las variables analizadas fueron: grasa, densidad, extracto seco desgrasado, proteínas y lactosa. Los primeros dos componentes principales explicaron el 87.24% de la variación total. Se verificó la formación de diferentes grupos distribuidos en los cuatro cuadrantes del sistema. El cuadrante I se destacó de los demás por formar un grupo compuesto por diez productores en la región analizada, caracterizado por presentar muestras con un mayor contenido de lactosa y un menor contenido de grasa en la leche. Las variables lactosa y grasa son más importantes en la caracterización de la leche.A análise multivariada envolve a aplicação de métodos estatísticos e computacionais para predizer respostas. Dentre os diversos métodos de análise estatística multivariada, a análise por componentes principais recebe destaque para efetuar a previsão da composição e qualidade de alimentos em geral. Objetivou-se, com o presente trabalho, caracterizar os produtores de leite do município de Itapetinga-BA, utilizando análise de componentes principais. Foram utilizadas 20 amostras de leite cru, coletadas na recepção do laticínio localizado em Itapetinga-BA. As variáveis analisadas foram: gordura, densidade, extrato seco desengordurado, proteína e lactose. Os dois primeiros componentes principais explicaram 87,24% da variação total. Verificou-se a formação de diferentes grupos distribuídos nos quatro quadrantes do sistema. O quadrante I destacou-se dos demais por formar um grupo composto por dez produtores da região analisada, caracterizando-se por apresentar amostras com maior teor de lactose e menor teor de gordura no leite. As variáveis lactose e gordura apresentam maior importância na caracterização do leite.Research, Society and Development2020-03-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/280810.33448/rsd-v9i4.2808Research, Society and Development; Vol. 9 No. 4; e41942808Research, Society and Development; Vol. 9 Núm. 4; e41942808Research, Society and Development; v. 9 n. 4; e419428082525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/2808/3090Copyright (c) 2020 Lenara Oliveira Pinheiroinfo:eu-repo/semantics/openAccessPinheiro, Lenara OliveiraJúnior, Mário RobertoLima, Clara Mariana GonçalvesSousa, Heliara CairesPagnossa, Jorge PamplonaSantos, Leandro SoaresFernandes, Sérgio Augusto de Albuquerque2020-08-20T18:07:16Zoai:ojs.pkp.sfu.ca:article/2808Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:27:14.942118Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Use of multivariate statistics to predict the physicochemical quality of milk Uso de estadísticas multivariadas para predecir la calidad fisicoquímica de la leche Utilização de estatística multivariada na predição da qualidade físico-química de leite |
title |
Use of multivariate statistics to predict the physicochemical quality of milk |
spellingShingle |
Use of multivariate statistics to predict the physicochemical quality of milk Pinheiro, Lenara Oliveira Métodos Componentes principais Produtores Matriz de origem animal. Métodos Componentes principales Productores Matriz de origen animal. Methods Principal components Producers Animal origin matrix. |
title_short |
Use of multivariate statistics to predict the physicochemical quality of milk |
title_full |
Use of multivariate statistics to predict the physicochemical quality of milk |
title_fullStr |
Use of multivariate statistics to predict the physicochemical quality of milk |
title_full_unstemmed |
Use of multivariate statistics to predict the physicochemical quality of milk |
title_sort |
Use of multivariate statistics to predict the physicochemical quality of milk |
author |
Pinheiro, Lenara Oliveira |
author_facet |
Pinheiro, Lenara Oliveira Júnior, Mário Roberto Lima, Clara Mariana Gonçalves Sousa, Heliara Caires Pagnossa, Jorge Pamplona Santos, Leandro Soares Fernandes, Sérgio Augusto de Albuquerque |
author_role |
author |
author2 |
Júnior, Mário Roberto Lima, Clara Mariana Gonçalves Sousa, Heliara Caires Pagnossa, Jorge Pamplona Santos, Leandro Soares Fernandes, Sérgio Augusto de Albuquerque |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Pinheiro, Lenara Oliveira Júnior, Mário Roberto Lima, Clara Mariana Gonçalves Sousa, Heliara Caires Pagnossa, Jorge Pamplona Santos, Leandro Soares Fernandes, Sérgio Augusto de Albuquerque |
dc.subject.por.fl_str_mv |
Métodos Componentes principais Produtores Matriz de origem animal. Métodos Componentes principales Productores Matriz de origen animal. Methods Principal components Producers Animal origin matrix. |
topic |
Métodos Componentes principais Produtores Matriz de origem animal. Métodos Componentes principales Productores Matriz de origen animal. Methods Principal components Producers Animal origin matrix. |
description |
Multivariate analysis involves the application of statistical and computational methods to predict responses. Among the various methods of statistical analysis multivariate, the analysis by main components is highlighted to predict the composition and quality of food in general. The objective of this work was to characterize the milk producers of the municipality of Itapetinga-BA, using principal component analysis. Twenty samples of raw milk were used, collected at the reception of the dairy located in Itapetinga-BA. The variables analyzed were: fat, density, defatted dry extract, protein and lactose. The first two main components explained 87.24% of the total variation. It was verified the formation of different groups distributed in the four quadrants of the system. First quadrant stood out from the others by forming a group composed of ten producers in the analyzed region, characterized by presenting samples with higher lactose content and lower fat content in milk. The lactose and fat variables are of greater importance in the characterization of milk. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/2808 10.33448/rsd-v9i4.2808 |
url |
https://rsdjournal.org/index.php/rsd/article/view/2808 |
identifier_str_mv |
10.33448/rsd-v9i4.2808 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/2808/3090 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Lenara Oliveira Pinheiro info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Lenara Oliveira Pinheiro |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 4; e41942808 Research, Society and Development; Vol. 9 Núm. 4; e41942808 Research, Society and Development; v. 9 n. 4; e41942808 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052734773395456 |