Jumps impact on the volatility discontinuous component: the case of Petrobras

Detalhes bibliográficos
Autor(a) principal: Herval, Ana Claudia Festucci de
Data de Publicação: 2022
Outros Autores: Sáfadi, Thelma
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/28326
Resumo: The presence of jumps has an important impact on forecasting volatility of financial assets. These jumps can be understood as a large local structural changes in the price series and are often associated at a behavioral issue of investors, usually caused by macroeconomics news announcements. The wavelets approach can be used in these situations once it detects jumps locations efficiently. However, it is common that this detection to be performed only at the finest level since this is where the noises are expected to be located. In this context, this work explored the presence of jumps in the different levels of decomposition of the studied time serie, to determine the estimation of the variation due to jumps in the variability of the price process. For this, an analysis was carried out from the series of log-prices of PETROBRAS shares (PETR4), at a frequency of 1 minute, in a period with a strong fall evidenced by an intervention in the presidency of the state-owned company. The methodology used showed that, particularly for this mentioned price drop, the variability due to jumps is impacted in a way that its estimate more than triples when also considering the low frequency levels, corresponding to investment horizons ranging from minutes to 1 to 2 hours of trading, which also highlights the length of time the news effect takes to dilute in the stock market.
id UNIFEI_18f97d6101b52d59f48e2ea33267bef2
oai_identifier_str oai:ojs.pkp.sfu.ca:article/28326
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Jumps impact on the volatility discontinuous component: the case of PetrobrasImpacto de los saltos en el componente discreta de la volatilidad: el caso da PetrobrasImpacto dos saltos na componente discreta da volatilidade: o caso da PetrobrásAnálise de saltos multiescalaAnálise de volatilidadeDados financeiros de alta frequênciaDecomposição de ondaletasMercado brasileiro de açõesSéries temporais financeirasEnsino de finanças.Análisis de salto multiescalaAnálisis de volatilidadDatos financieros de alta frecuenciaDescomposición waveletBolsa de valores brasileñaSerie temporal financieraEnseñando finanzas.Multi-Scale Jump analysisVolatility AnalysisHigh-Frequency Financial DataWavelet decompositionBrazilian Stock MarketFinancial Time SeriesFinance teaching.The presence of jumps has an important impact on forecasting volatility of financial assets. These jumps can be understood as a large local structural changes in the price series and are often associated at a behavioral issue of investors, usually caused by macroeconomics news announcements. The wavelets approach can be used in these situations once it detects jumps locations efficiently. However, it is common that this detection to be performed only at the finest level since this is where the noises are expected to be located. In this context, this work explored the presence of jumps in the different levels of decomposition of the studied time serie, to determine the estimation of the variation due to jumps in the variability of the price process. For this, an analysis was carried out from the series of log-prices of PETROBRAS shares (PETR4), at a frequency of 1 minute, in a period with a strong fall evidenced by an intervention in the presidency of the state-owned company. The methodology used showed that, particularly for this mentioned price drop, the variability due to jumps is impacted in a way that its estimate more than triples when also considering the low frequency levels, corresponding to investment horizons ranging from minutes to 1 to 2 hours of trading, which also highlights the length of time the news effect takes to dilute in the stock market.La presencia de saltos tiene un fuerte impacto en la previsión de la volatilidad de los activos financieros. Estos saltos pueden entenderse como grandes cambios estructurales locales en la serie de precios y, a menudo, se asocian a un problema de comportamiento para los inversores, generalmente causado por anuncios de noticias macroeconómicas. El enfoque de wavelet se puede utilizar en estas situaciones una vez que detecta ubicaciones de salto de manera eficiente. Sin embargo, es común que esta detección se realice solo en el nivel más fino, ya que es donde se espera que se localice los ruidos. En este contexto, el presente trabajo exploró la presencia de saltos en los diferentes niveles de descomposición de la serie estudiada, con el fin de determinar la estimación de la variación por saltos en la variabilidad del proceso de precios. Para ello, se realizó un análisis a partir de la serie de log-precios de las acciones de PETROBRAS (PETR4), con una frecuencia de 1 minuto, en un período con fuerte caída evidenciada por una intervención en la presidencia de la estatal. La metodología utilizada mostró que, particularmente para esta caída de precios mencionada, la variabilidad por saltos se ve impactada de manera que su estimación más que se triplica al considerar también los niveles de frecuencia más bajos, correspondientes a horizontes de inversión que van desde minutos hasta 1 a 2 horas de Trading, que también destaca el tiempo que tarda el efecto de las noticias en diluirse en el mercado de valores.A presença de saltos possui forte impacto na previsão da volatilidade de ativos financeiros. Estes saltos podem ser compreendidos como grandes mudanças estruturais locais na série de preços, e frequentemente estão associados à uma questão comportamental dos investidores, em geral causada por anúncios de notícias macroeconômicas. A abordagem de ondaletas pode ser utilizada em situações como esta, uma vez que detectam locais de salto com eficiência. No entanto, é comum que essa detecção seja realizada apenas no nível de maior detalhe, já que é onde espera-se que os ruídos estejam localizados. Neste contexto, o presente trabalho explorou a presença de saltos nos diversos níveis de decomposição da série estudada, a fim de apurar a estimação da variação devida à saltos na variabilidade do processo de preço. Para isto, uma análise foi realizada a partir da série de log-preços das ações da PETROBRÁS (PETR4), na frequência de 1 minuto, em um período com uma forte queda evidenciada por uma intervenção na presidência da estatal. A metodologia utilizada evidenciou que, particularmente para esta queda de preços citada, a variabilidade devida à saltos é impactada de forma que sua estimativa mais que triplica ao se considerar também os níveis de menor frequência, correspondentes a horizontes de investimentos que vão de minutos até 1 a 2 horas de negociação, o que destaca também o período de tempo que o efeito da notícia leva para diluir no mercado de ações.Research, Society and Development2022-04-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2832610.33448/rsd-v11i5.28326Research, Society and Development; Vol. 11 No. 5; e37611528326Research, Society and Development; Vol. 11 Núm. 5; e37611528326Research, Society and Development; v. 11 n. 5; e376115283262525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/28326/24665Copyright (c) 2022 Ana Claudia Festucci de Herval; Thelma Sáfadihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessHerval, Ana Claudia Festucci de Sáfadi, Thelma2022-04-17T18:18:56Zoai:ojs.pkp.sfu.ca:article/28326Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:46.159774Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Jumps impact on the volatility discontinuous component: the case of Petrobras
Impacto de los saltos en el componente discreta de la volatilidad: el caso da Petrobras
Impacto dos saltos na componente discreta da volatilidade: o caso da Petrobrás
title Jumps impact on the volatility discontinuous component: the case of Petrobras
spellingShingle Jumps impact on the volatility discontinuous component: the case of Petrobras
Herval, Ana Claudia Festucci de
Análise de saltos multiescala
Análise de volatilidade
Dados financeiros de alta frequência
Decomposição de ondaletas
Mercado brasileiro de ações
Séries temporais financeiras
Ensino de finanças.
Análisis de salto multiescala
Análisis de volatilidad
Datos financieros de alta frecuencia
Descomposición wavelet
Bolsa de valores brasileña
Serie temporal financiera
Enseñando finanzas.
Multi-Scale Jump analysis
Volatility Analysis
High-Frequency Financial Data
Wavelet decomposition
Brazilian Stock Market
Financial Time Series
Finance teaching.
title_short Jumps impact on the volatility discontinuous component: the case of Petrobras
title_full Jumps impact on the volatility discontinuous component: the case of Petrobras
title_fullStr Jumps impact on the volatility discontinuous component: the case of Petrobras
title_full_unstemmed Jumps impact on the volatility discontinuous component: the case of Petrobras
title_sort Jumps impact on the volatility discontinuous component: the case of Petrobras
author Herval, Ana Claudia Festucci de
author_facet Herval, Ana Claudia Festucci de
Sáfadi, Thelma
author_role author
author2 Sáfadi, Thelma
author2_role author
dc.contributor.author.fl_str_mv Herval, Ana Claudia Festucci de
Sáfadi, Thelma
dc.subject.por.fl_str_mv Análise de saltos multiescala
Análise de volatilidade
Dados financeiros de alta frequência
Decomposição de ondaletas
Mercado brasileiro de ações
Séries temporais financeiras
Ensino de finanças.
Análisis de salto multiescala
Análisis de volatilidad
Datos financieros de alta frecuencia
Descomposición wavelet
Bolsa de valores brasileña
Serie temporal financiera
Enseñando finanzas.
Multi-Scale Jump analysis
Volatility Analysis
High-Frequency Financial Data
Wavelet decomposition
Brazilian Stock Market
Financial Time Series
Finance teaching.
topic Análise de saltos multiescala
Análise de volatilidade
Dados financeiros de alta frequência
Decomposição de ondaletas
Mercado brasileiro de ações
Séries temporais financeiras
Ensino de finanças.
Análisis de salto multiescala
Análisis de volatilidad
Datos financieros de alta frecuencia
Descomposición wavelet
Bolsa de valores brasileña
Serie temporal financiera
Enseñando finanzas.
Multi-Scale Jump analysis
Volatility Analysis
High-Frequency Financial Data
Wavelet decomposition
Brazilian Stock Market
Financial Time Series
Finance teaching.
description The presence of jumps has an important impact on forecasting volatility of financial assets. These jumps can be understood as a large local structural changes in the price series and are often associated at a behavioral issue of investors, usually caused by macroeconomics news announcements. The wavelets approach can be used in these situations once it detects jumps locations efficiently. However, it is common that this detection to be performed only at the finest level since this is where the noises are expected to be located. In this context, this work explored the presence of jumps in the different levels of decomposition of the studied time serie, to determine the estimation of the variation due to jumps in the variability of the price process. For this, an analysis was carried out from the series of log-prices of PETROBRAS shares (PETR4), at a frequency of 1 minute, in a period with a strong fall evidenced by an intervention in the presidency of the state-owned company. The methodology used showed that, particularly for this mentioned price drop, the variability due to jumps is impacted in a way that its estimate more than triples when also considering the low frequency levels, corresponding to investment horizons ranging from minutes to 1 to 2 hours of trading, which also highlights the length of time the news effect takes to dilute in the stock market.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/28326
10.33448/rsd-v11i5.28326
url https://rsdjournal.org/index.php/rsd/article/view/28326
identifier_str_mv 10.33448/rsd-v11i5.28326
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/28326/24665
dc.rights.driver.fl_str_mv Copyright (c) 2022 Ana Claudia Festucci de Herval; Thelma Sáfadi
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Ana Claudia Festucci de Herval; Thelma Sáfadi
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 5; e37611528326
Research, Society and Development; Vol. 11 Núm. 5; e37611528326
Research, Society and Development; v. 11 n. 5; e37611528326
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052764998598656