Jumps impact on the volatility discontinuous component: the case of Petrobras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/28326 |
Resumo: | The presence of jumps has an important impact on forecasting volatility of financial assets. These jumps can be understood as a large local structural changes in the price series and are often associated at a behavioral issue of investors, usually caused by macroeconomics news announcements. The wavelets approach can be used in these situations once it detects jumps locations efficiently. However, it is common that this detection to be performed only at the finest level since this is where the noises are expected to be located. In this context, this work explored the presence of jumps in the different levels of decomposition of the studied time serie, to determine the estimation of the variation due to jumps in the variability of the price process. For this, an analysis was carried out from the series of log-prices of PETROBRAS shares (PETR4), at a frequency of 1 minute, in a period with a strong fall evidenced by an intervention in the presidency of the state-owned company. The methodology used showed that, particularly for this mentioned price drop, the variability due to jumps is impacted in a way that its estimate more than triples when also considering the low frequency levels, corresponding to investment horizons ranging from minutes to 1 to 2 hours of trading, which also highlights the length of time the news effect takes to dilute in the stock market. |
id |
UNIFEI_18f97d6101b52d59f48e2ea33267bef2 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/28326 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Jumps impact on the volatility discontinuous component: the case of PetrobrasImpacto de los saltos en el componente discreta de la volatilidad: el caso da PetrobrasImpacto dos saltos na componente discreta da volatilidade: o caso da PetrobrásAnálise de saltos multiescalaAnálise de volatilidadeDados financeiros de alta frequênciaDecomposição de ondaletasMercado brasileiro de açõesSéries temporais financeirasEnsino de finanças.Análisis de salto multiescalaAnálisis de volatilidadDatos financieros de alta frecuenciaDescomposición waveletBolsa de valores brasileñaSerie temporal financieraEnseñando finanzas.Multi-Scale Jump analysisVolatility AnalysisHigh-Frequency Financial DataWavelet decompositionBrazilian Stock MarketFinancial Time SeriesFinance teaching.The presence of jumps has an important impact on forecasting volatility of financial assets. These jumps can be understood as a large local structural changes in the price series and are often associated at a behavioral issue of investors, usually caused by macroeconomics news announcements. The wavelets approach can be used in these situations once it detects jumps locations efficiently. However, it is common that this detection to be performed only at the finest level since this is where the noises are expected to be located. In this context, this work explored the presence of jumps in the different levels of decomposition of the studied time serie, to determine the estimation of the variation due to jumps in the variability of the price process. For this, an analysis was carried out from the series of log-prices of PETROBRAS shares (PETR4), at a frequency of 1 minute, in a period with a strong fall evidenced by an intervention in the presidency of the state-owned company. The methodology used showed that, particularly for this mentioned price drop, the variability due to jumps is impacted in a way that its estimate more than triples when also considering the low frequency levels, corresponding to investment horizons ranging from minutes to 1 to 2 hours of trading, which also highlights the length of time the news effect takes to dilute in the stock market.La presencia de saltos tiene un fuerte impacto en la previsión de la volatilidad de los activos financieros. Estos saltos pueden entenderse como grandes cambios estructurales locales en la serie de precios y, a menudo, se asocian a un problema de comportamiento para los inversores, generalmente causado por anuncios de noticias macroeconómicas. El enfoque de wavelet se puede utilizar en estas situaciones una vez que detecta ubicaciones de salto de manera eficiente. Sin embargo, es común que esta detección se realice solo en el nivel más fino, ya que es donde se espera que se localice los ruidos. En este contexto, el presente trabajo exploró la presencia de saltos en los diferentes niveles de descomposición de la serie estudiada, con el fin de determinar la estimación de la variación por saltos en la variabilidad del proceso de precios. Para ello, se realizó un análisis a partir de la serie de log-precios de las acciones de PETROBRAS (PETR4), con una frecuencia de 1 minuto, en un período con fuerte caída evidenciada por una intervención en la presidencia de la estatal. La metodología utilizada mostró que, particularmente para esta caída de precios mencionada, la variabilidad por saltos se ve impactada de manera que su estimación más que se triplica al considerar también los niveles de frecuencia más bajos, correspondientes a horizontes de inversión que van desde minutos hasta 1 a 2 horas de Trading, que también destaca el tiempo que tarda el efecto de las noticias en diluirse en el mercado de valores.A presença de saltos possui forte impacto na previsão da volatilidade de ativos financeiros. Estes saltos podem ser compreendidos como grandes mudanças estruturais locais na série de preços, e frequentemente estão associados à uma questão comportamental dos investidores, em geral causada por anúncios de notícias macroeconômicas. A abordagem de ondaletas pode ser utilizada em situações como esta, uma vez que detectam locais de salto com eficiência. No entanto, é comum que essa detecção seja realizada apenas no nível de maior detalhe, já que é onde espera-se que os ruídos estejam localizados. Neste contexto, o presente trabalho explorou a presença de saltos nos diversos níveis de decomposição da série estudada, a fim de apurar a estimação da variação devida à saltos na variabilidade do processo de preço. Para isto, uma análise foi realizada a partir da série de log-preços das ações da PETROBRÁS (PETR4), na frequência de 1 minuto, em um período com uma forte queda evidenciada por uma intervenção na presidência da estatal. A metodologia utilizada evidenciou que, particularmente para esta queda de preços citada, a variabilidade devida à saltos é impactada de forma que sua estimativa mais que triplica ao se considerar também os níveis de menor frequência, correspondentes a horizontes de investimentos que vão de minutos até 1 a 2 horas de negociação, o que destaca também o período de tempo que o efeito da notícia leva para diluir no mercado de ações.Research, Society and Development2022-04-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2832610.33448/rsd-v11i5.28326Research, Society and Development; Vol. 11 No. 5; e37611528326Research, Society and Development; Vol. 11 Núm. 5; e37611528326Research, Society and Development; v. 11 n. 5; e376115283262525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/28326/24665Copyright (c) 2022 Ana Claudia Festucci de Herval; Thelma Sáfadihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessHerval, Ana Claudia Festucci de Sáfadi, Thelma2022-04-17T18:18:56Zoai:ojs.pkp.sfu.ca:article/28326Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:46.159774Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Jumps impact on the volatility discontinuous component: the case of Petrobras Impacto de los saltos en el componente discreta de la volatilidad: el caso da Petrobras Impacto dos saltos na componente discreta da volatilidade: o caso da Petrobrás |
title |
Jumps impact on the volatility discontinuous component: the case of Petrobras |
spellingShingle |
Jumps impact on the volatility discontinuous component: the case of Petrobras Herval, Ana Claudia Festucci de Análise de saltos multiescala Análise de volatilidade Dados financeiros de alta frequência Decomposição de ondaletas Mercado brasileiro de ações Séries temporais financeiras Ensino de finanças. Análisis de salto multiescala Análisis de volatilidad Datos financieros de alta frecuencia Descomposición wavelet Bolsa de valores brasileña Serie temporal financiera Enseñando finanzas. Multi-Scale Jump analysis Volatility Analysis High-Frequency Financial Data Wavelet decomposition Brazilian Stock Market Financial Time Series Finance teaching. |
title_short |
Jumps impact on the volatility discontinuous component: the case of Petrobras |
title_full |
Jumps impact on the volatility discontinuous component: the case of Petrobras |
title_fullStr |
Jumps impact on the volatility discontinuous component: the case of Petrobras |
title_full_unstemmed |
Jumps impact on the volatility discontinuous component: the case of Petrobras |
title_sort |
Jumps impact on the volatility discontinuous component: the case of Petrobras |
author |
Herval, Ana Claudia Festucci de |
author_facet |
Herval, Ana Claudia Festucci de Sáfadi, Thelma |
author_role |
author |
author2 |
Sáfadi, Thelma |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Herval, Ana Claudia Festucci de Sáfadi, Thelma |
dc.subject.por.fl_str_mv |
Análise de saltos multiescala Análise de volatilidade Dados financeiros de alta frequência Decomposição de ondaletas Mercado brasileiro de ações Séries temporais financeiras Ensino de finanças. Análisis de salto multiescala Análisis de volatilidad Datos financieros de alta frecuencia Descomposición wavelet Bolsa de valores brasileña Serie temporal financiera Enseñando finanzas. Multi-Scale Jump analysis Volatility Analysis High-Frequency Financial Data Wavelet decomposition Brazilian Stock Market Financial Time Series Finance teaching. |
topic |
Análise de saltos multiescala Análise de volatilidade Dados financeiros de alta frequência Decomposição de ondaletas Mercado brasileiro de ações Séries temporais financeiras Ensino de finanças. Análisis de salto multiescala Análisis de volatilidad Datos financieros de alta frecuencia Descomposición wavelet Bolsa de valores brasileña Serie temporal financiera Enseñando finanzas. Multi-Scale Jump analysis Volatility Analysis High-Frequency Financial Data Wavelet decomposition Brazilian Stock Market Financial Time Series Finance teaching. |
description |
The presence of jumps has an important impact on forecasting volatility of financial assets. These jumps can be understood as a large local structural changes in the price series and are often associated at a behavioral issue of investors, usually caused by macroeconomics news announcements. The wavelets approach can be used in these situations once it detects jumps locations efficiently. However, it is common that this detection to be performed only at the finest level since this is where the noises are expected to be located. In this context, this work explored the presence of jumps in the different levels of decomposition of the studied time serie, to determine the estimation of the variation due to jumps in the variability of the price process. For this, an analysis was carried out from the series of log-prices of PETROBRAS shares (PETR4), at a frequency of 1 minute, in a period with a strong fall evidenced by an intervention in the presidency of the state-owned company. The methodology used showed that, particularly for this mentioned price drop, the variability due to jumps is impacted in a way that its estimate more than triples when also considering the low frequency levels, corresponding to investment horizons ranging from minutes to 1 to 2 hours of trading, which also highlights the length of time the news effect takes to dilute in the stock market. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/28326 10.33448/rsd-v11i5.28326 |
url |
https://rsdjournal.org/index.php/rsd/article/view/28326 |
identifier_str_mv |
10.33448/rsd-v11i5.28326 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/28326/24665 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Ana Claudia Festucci de Herval; Thelma Sáfadi https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Ana Claudia Festucci de Herval; Thelma Sáfadi https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 5; e37611528326 Research, Society and Development; Vol. 11 Núm. 5; e37611528326 Research, Society and Development; v. 11 n. 5; e37611528326 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052764998598656 |