Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/13214 |
Resumo: | The present work aims to determine the physical-chemical composition and bioactive compounds of the fresh jabuticaba bark, perform its drying kinetics at three different drying air temperatures, adjust empirical and diffusive mathematical models to the experimental data, produce the powder and evaluate the effect of drying temperature on its composition. The fruits were harvested, washed and sanitized with sodium hypochlorite solution, then the fruits were manually pulped and the solid fractions, pulp, peels and seeds were separated. The jabuticaba peels were dried in an oven with air circulation at temperatures of 45, 50 and 55 ºC and a speed of 1.0 m/s. Curves of drying kinetics were constructed, represented by the ratio of water content to drying time in minutes, adjusting to the mathematical models of Handerson and Pabis, Logarithmic, Midilli, Page and Newton to the experimental data. The models were selected taking as a parameter the magnitude of the determination coefficient (R2) and the chi-square function (). Shortly after drying, the shells were crushed to obtain the powder, which was characterized before and after drying in terms of physical, chemical, bioactive compounds and antioxidant activity. Fresh jabuticaba peels showed high levels of total phenolic compounds and total tannins. The Midilli model stood out from the others for presenting the highest value of R2 (> 99%) and the lowest value of the chi-square function (<0.000327) for the three temperatures studied, especially for the 45 ºC. The drying kinetics of jabuticaba peels showed that the temperature influenced the process, and that the constant “k” increased with its elevation, and the time of the process decreased as a result of its increase. The temperature of 45 ° C ensured a greater preservation of the total phenolic compounds, total anthocyanins and total flavonoids of the powder of the jabuticaba peels, and can be an alternative as an ingredient in the elaboration of several products, among them: bread, cake, biscuit, yogurt and drink milk because it has a significant amount of these bioactive compounds. |
id |
UNIFEI_24fa9193670bc0233aba88e87aaa7c30 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/13214 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora)Modelado y simulación del proceso de secado de cáscaras de jabuticaba (Myrciaria cauliflora)Modelagem e simulação do processo de secagem das cascas de jabuticaba (Myrciaria cauliflora) Functional foodBioactive compoundsConservationAgro-industrial waste.Comida funcionalCompuestos bioactivosConservaciónResiduos agroindustriales.Alimento funcionalCompostos bioativosConservaçãoResíduo agroindustrial.The present work aims to determine the physical-chemical composition and bioactive compounds of the fresh jabuticaba bark, perform its drying kinetics at three different drying air temperatures, adjust empirical and diffusive mathematical models to the experimental data, produce the powder and evaluate the effect of drying temperature on its composition. The fruits were harvested, washed and sanitized with sodium hypochlorite solution, then the fruits were manually pulped and the solid fractions, pulp, peels and seeds were separated. The jabuticaba peels were dried in an oven with air circulation at temperatures of 45, 50 and 55 ºC and a speed of 1.0 m/s. Curves of drying kinetics were constructed, represented by the ratio of water content to drying time in minutes, adjusting to the mathematical models of Handerson and Pabis, Logarithmic, Midilli, Page and Newton to the experimental data. The models were selected taking as a parameter the magnitude of the determination coefficient (R2) and the chi-square function (). Shortly after drying, the shells were crushed to obtain the powder, which was characterized before and after drying in terms of physical, chemical, bioactive compounds and antioxidant activity. Fresh jabuticaba peels showed high levels of total phenolic compounds and total tannins. The Midilli model stood out from the others for presenting the highest value of R2 (> 99%) and the lowest value of the chi-square function (<0.000327) for the three temperatures studied, especially for the 45 ºC. The drying kinetics of jabuticaba peels showed that the temperature influenced the process, and that the constant “k” increased with its elevation, and the time of the process decreased as a result of its increase. The temperature of 45 ° C ensured a greater preservation of the total phenolic compounds, total anthocyanins and total flavonoids of the powder of the jabuticaba peels, and can be an alternative as an ingredient in the elaboration of several products, among them: bread, cake, biscuit, yogurt and drink milk because it has a significant amount of these bioactive compounds.El presente trabajo tiene como objetivo determinar la composición físico-química y compuestos bioactivos de la corteza fresca de jabuticaba, realizar su cinética de secado a tres temperaturas de aire de secado diferentes, ajustar modelos matemáticos empíricos y difusivos a los datos experimentales, producir el polvo y evaluar el efecto de temperatura de secado en su composición. Los frutos se recolectaron, lavaron y desinfectaron con solución de hipoclorito de sodio, luego los frutos se despulparon manualmente y se separaron las fracciones sólidas, pulpa, cáscaras y semillas. Las cáscaras de jabuticaba se secaron en un horno con circulación de aire a temperaturas de 45, 50 y 55 ºC y una velocidad de 1,0 m/s. Se construyeron curvas de cinética de secado, representadas por la relación entre el contenido de agua y el tiempo de secado en minutos, ajustándose a los modelos matemáticos de Handerson y Pabis, Logarithmic, Midilli, Page y Newton a los datos experimentales. Los modelos fueron seleccionados tomando como parámetro la magnitud del coeficiente de determinación (R2) y la función chi-cuadrado (). Poco después del secado, las cáscaras se trituraron para obtener el polvo, que se caracterizó antes y después del secado en términos de compuestos físicos, químicos, bioactivos y actividad antioxidante. Las cáscaras frescas de jabuticaba mostraron altos niveles de compuestos fenólicos totales y taninos totales. El modelo de Midilli se destacó de los demás por presentar el mayor valor de R2 (> 99%) y el menor valor de la función chi-cuadrado (<0.000327) para las tres temperaturas estudiadas, especialmente para los 45 ºC. La cinética de secado de las cáscaras de jabuticaba mostró que la temperatura influyó en el proceso y que la constante “k” aumentó con su elevación y el tiempo del proceso disminuyó como resultado de su aumento. La temperatura de 45 °C aseguró una mayor conservación de los compuestos fenólicos totales, antocianinas totales y flavonoides totales del polvo de las cáscaras de jabuticaba, pudiendo ser una alternativa como ingrediente en la elaboración de varios productos, entre ellos: pan, torta, bizcocho, yogur y leche de bebida porque tiene una cantidad significativa de estos compuestos bioactivos.O presente trabalho tem como objetivo determinar a composição físico-química e dos compostos bioativos da casca de jabuticaba fresca, realizar a sua cinética de secagem em três diferentes temperaturas de ar de secagem, ajustar modelos matemáticos empíricos e difusivo aos dados experimentais, produzir o pó e avaliar efeito da temperatura de secagem sobre a sua composição. Os frutos foram colhidos, lavados e higienizados com solução de hipoclorito de sódio, em seguida os frutos foram despolpados manualmente e as frações sólidas, polpa, cascas e sementes foram separadas. As cascas de jabuticaba foram secas em estufa com circulação de ar nas temperaturas de 45, 50 e 55 ºC e velocidade de 1.0 m/s. Foram construídas as curvas da cinética de secagem, representadas pela razão do teor de água em função do tempo de secagem em minutos, ajustando aos modelos matemáticos de Handerson e Pabis, Logarítmico, Midilli, Page e Newton aos dados experimentais. Os modelos foram selecionados tomando-se como parâmetro a magnitude do coeficiente de determinação (R2) e a função qui-quadrado (). Logo após a secagem as cascas foram trituradas para obtenção do pó, o qual foi caracterizado antes e após a secagem quanto as características físicas, químicas, compostos bioativos e atividade antioxidante. As cascas frescas de jabuticaba apresentaram altos teores de compostos fenólicos totais e taninos totais. O modelo de Midilli se destacou dos demais por apresentar o maior valor de R2 (>99%) e o menor valor da função qui-quadrado (<0.000327) para as três temperaturas estudadas, em especial para a de 45 ºC. A cinética de secagem das cascas de jabuticaba mostrou que a temperatura influenciou no processo, e que a constante “k” aumentou com a sua elevação, e o tempo do processo diminuiu em função do seu aumento. A temperatura de 45 °C garantiu uma maior preservação dos compostos fenólicos totais, antocianinas totais e flavonoides totais do pó das cascas da jabuticaba, podendo ser uma alternativa como ingrediente na elaboração de vários produtos dentre eles: pão, bolo, biscoito, iogurte e bebida láctea por ter uma quantidade significativa desses compostos bioativos.Research, Society and Development2021-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1321410.33448/rsd-v10i3.13214Research, Society and Development; Vol. 10 No. 3; e21510313214Research, Society and Development; Vol. 10 Núm. 3; e21510313214Research, Society and Development; v. 10 n. 3; e215103132142525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/13214/11913Copyright (c) 2021 Wanda Izabel Monteiro de Lima Marsiglia; Ângela Maria Santiago; Helton Gomes Alves; Raphael Lucas Jacinto Almeida; Newton Carlos Santos; Cecília Elisa de Sousa Muniz; Pablícia Oliveira Galdino; Mércia Melo de Almeida Mota; Marcello Maia de Almeidahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMarsiglia, Wanda Izabel Monteiro de Lima Santiago, Ângela Maria Alves, Helton Gomes Almeida, Raphael Lucas JacintoSantos, Newton Carlos Muniz, Cecília Elisa de Sousa Galdino, Pablícia Oliveira Mota, Mércia Melo de Almeida Almeida, Marcello Maia de 2021-03-28T12:03:35Zoai:ojs.pkp.sfu.ca:article/13214Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:34:36.940968Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) Modelado y simulación del proceso de secado de cáscaras de jabuticaba (Myrciaria cauliflora) Modelagem e simulação do processo de secagem das cascas de jabuticaba (Myrciaria cauliflora) |
title |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) |
spellingShingle |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) Marsiglia, Wanda Izabel Monteiro de Lima Functional food Bioactive compounds Conservation Agro-industrial waste. Comida funcional Compuestos bioactivos Conservación Residuos agroindustriales. Alimento funcional Compostos bioativos Conservação Resíduo agroindustrial. |
title_short |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) |
title_full |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) |
title_fullStr |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) |
title_full_unstemmed |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) |
title_sort |
Modeling and simulation of the drying process of jabuticaba shells (Myrciaria cauliflora) |
author |
Marsiglia, Wanda Izabel Monteiro de Lima |
author_facet |
Marsiglia, Wanda Izabel Monteiro de Lima Santiago, Ângela Maria Alves, Helton Gomes Almeida, Raphael Lucas Jacinto Santos, Newton Carlos Muniz, Cecília Elisa de Sousa Galdino, Pablícia Oliveira Mota, Mércia Melo de Almeida Almeida, Marcello Maia de |
author_role |
author |
author2 |
Santiago, Ângela Maria Alves, Helton Gomes Almeida, Raphael Lucas Jacinto Santos, Newton Carlos Muniz, Cecília Elisa de Sousa Galdino, Pablícia Oliveira Mota, Mércia Melo de Almeida Almeida, Marcello Maia de |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Marsiglia, Wanda Izabel Monteiro de Lima Santiago, Ângela Maria Alves, Helton Gomes Almeida, Raphael Lucas Jacinto Santos, Newton Carlos Muniz, Cecília Elisa de Sousa Galdino, Pablícia Oliveira Mota, Mércia Melo de Almeida Almeida, Marcello Maia de |
dc.subject.por.fl_str_mv |
Functional food Bioactive compounds Conservation Agro-industrial waste. Comida funcional Compuestos bioactivos Conservación Residuos agroindustriales. Alimento funcional Compostos bioativos Conservação Resíduo agroindustrial. |
topic |
Functional food Bioactive compounds Conservation Agro-industrial waste. Comida funcional Compuestos bioactivos Conservación Residuos agroindustriales. Alimento funcional Compostos bioativos Conservação Resíduo agroindustrial. |
description |
The present work aims to determine the physical-chemical composition and bioactive compounds of the fresh jabuticaba bark, perform its drying kinetics at three different drying air temperatures, adjust empirical and diffusive mathematical models to the experimental data, produce the powder and evaluate the effect of drying temperature on its composition. The fruits were harvested, washed and sanitized with sodium hypochlorite solution, then the fruits were manually pulped and the solid fractions, pulp, peels and seeds were separated. The jabuticaba peels were dried in an oven with air circulation at temperatures of 45, 50 and 55 ºC and a speed of 1.0 m/s. Curves of drying kinetics were constructed, represented by the ratio of water content to drying time in minutes, adjusting to the mathematical models of Handerson and Pabis, Logarithmic, Midilli, Page and Newton to the experimental data. The models were selected taking as a parameter the magnitude of the determination coefficient (R2) and the chi-square function (). Shortly after drying, the shells were crushed to obtain the powder, which was characterized before and after drying in terms of physical, chemical, bioactive compounds and antioxidant activity. Fresh jabuticaba peels showed high levels of total phenolic compounds and total tannins. The Midilli model stood out from the others for presenting the highest value of R2 (> 99%) and the lowest value of the chi-square function (<0.000327) for the three temperatures studied, especially for the 45 ºC. The drying kinetics of jabuticaba peels showed that the temperature influenced the process, and that the constant “k” increased with its elevation, and the time of the process decreased as a result of its increase. The temperature of 45 ° C ensured a greater preservation of the total phenolic compounds, total anthocyanins and total flavonoids of the powder of the jabuticaba peels, and can be an alternative as an ingredient in the elaboration of several products, among them: bread, cake, biscuit, yogurt and drink milk because it has a significant amount of these bioactive compounds. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/13214 10.33448/rsd-v10i3.13214 |
url |
https://rsdjournal.org/index.php/rsd/article/view/13214 |
identifier_str_mv |
10.33448/rsd-v10i3.13214 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/13214/11913 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 3; e21510313214 Research, Society and Development; Vol. 10 Núm. 3; e21510313214 Research, Society and Development; v. 10 n. 3; e21510313214 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052671810600960 |