Classification of specialty coffees using machine learning techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/14732 |
Resumo: | Specialty coffees have a big importance in the economic scenario, and its sensory quality is appreciated by the productive sector and by the market. Researches have been constantly carried out in the search for better blends in order to add value and differentiate prices according to the product quality. To accomplish that, new methodologies must be explored, taking into consideration factors that might differentiate the particularities of each consumer and/or product. Thus, this article suggests the use of the machine learning technique in the construction of supervised classification and identification models. In a sensory evaluation test for consumer acceptance using four classes of specialty coffees, applied to four groups of trained and untrained consumers, features such as flavor, body, sweetness and general grade were evaluated. The use of machine learning is viable because it allows the classification and identification of specialty coffees produced in different altitudes and different processing methods. |
id |
UNIFEI_42d08605b3a3af8520ac12c151b88ba6 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/14732 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Classification of specialty coffees using machine learning techniques Clasificación de cafés especiales utilizando técnicas de aprendizaje automáticoClassificação de cafés especiais usando técnicas de aprendizado de máquinaSupervised classificationClassification modelsSensory analysis.Clasificación supervisadaModelos de clasificaciónAnálisis sensorial.Classificação supervisionadaModelos de classificaçãoAnálise sensorial.Specialty coffees have a big importance in the economic scenario, and its sensory quality is appreciated by the productive sector and by the market. Researches have been constantly carried out in the search for better blends in order to add value and differentiate prices according to the product quality. To accomplish that, new methodologies must be explored, taking into consideration factors that might differentiate the particularities of each consumer and/or product. Thus, this article suggests the use of the machine learning technique in the construction of supervised classification and identification models. In a sensory evaluation test for consumer acceptance using four classes of specialty coffees, applied to four groups of trained and untrained consumers, features such as flavor, body, sweetness and general grade were evaluated. The use of machine learning is viable because it allows the classification and identification of specialty coffees produced in different altitudes and different processing methods.Los cafés especiales son de gran importancia en el escenario económico, y su calidad sensorial es apreciada por el sector productivo y el mercado. La investigación se ha llevado a cabo constantemente en la búsqueda de mejores mezclas con el fin de añadir valor y diferenciar los precios de acuerdo con la calidad del producto. Para ello, deben explorarse nuevas metodologías, teniendo en cuenta factores que puedan diferenciar las particularidades de cada consumidor y/o producto. Por lo tanto, este artículo sugiere el uso de la técnica de aprendizaje automático en la construcción de modelos supervisados de clasificación e identificación. En una prueba de evaluación sensorial para la aceptación del consumidor utilizando cuatro clases de cafés especiales, aplicadas a cuatro grupos de consumidores capacitados y no entrenados, se evaluaron características como sabor, cuerpo, dulzura y grado general. El uso del aprendizaje automático es factible porque permite la clasificación e identificación de cafés especiales producidos a diferentes altitudes y diferentes métodos de procesamiento.Os cafés especiais têm grande importância no cenário econômico, e sua qualidade sensorial é apreciada pelo setor produtivo e pelo mercado. Pesquisas têm sido constantemente realizadas na busca por melhores misturas a fim de agregar valor e diferenciar preços de acordo com a qualidade do produto. Para isso, novas metodologias devem ser exploradas, levando em consideração fatores que possam diferenciar as particularidades de cada consumidor e/ou produto. Assim, este artigo sugere o uso da técnica de machine learning na construção de modelos de classificação e identificação supervisionados. Em um teste de avaliação sensorial para aceitação do consumidor utilizando quatro classes de cafés especiais, aplicados a quatro grupos de consumidores treinados e não treinados, foram avaliadas características como sabor, corpo, doçura e grau geral. O uso de machine learning é viável porque permite a classificação e identificação de cafés especiais produzidos em diferentes altitudes e diferentes métodos de processamento.Research, Society and Development2021-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1473210.33448/rsd-v10i5.14732Research, Society and Development; Vol. 10 No. 5; e13110514732Research, Society and Development; Vol. 10 Núm. 5; e13110514732Research, Society and Development; v. 10 n. 5; e131105147322525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/14732/13246Copyright (c) 2021 Paulo César Ossani; Diogo Francisco Rossoni; Marcelo Ângelo Cirillo; Flávio Meira Borémhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOssani, Paulo CésarRossoni, Diogo Francisco Cirillo, Marcelo Ângelo Borém, Flávio Meira 2021-05-17T18:20:49Zoai:ojs.pkp.sfu.ca:article/14732Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:35:46.181242Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Classification of specialty coffees using machine learning techniques Clasificación de cafés especiales utilizando técnicas de aprendizaje automático Classificação de cafés especiais usando técnicas de aprendizado de máquina |
title |
Classification of specialty coffees using machine learning techniques |
spellingShingle |
Classification of specialty coffees using machine learning techniques Ossani, Paulo César Supervised classification Classification models Sensory analysis. Clasificación supervisada Modelos de clasificación Análisis sensorial. Classificação supervisionada Modelos de classificação Análise sensorial. |
title_short |
Classification of specialty coffees using machine learning techniques |
title_full |
Classification of specialty coffees using machine learning techniques |
title_fullStr |
Classification of specialty coffees using machine learning techniques |
title_full_unstemmed |
Classification of specialty coffees using machine learning techniques |
title_sort |
Classification of specialty coffees using machine learning techniques |
author |
Ossani, Paulo César |
author_facet |
Ossani, Paulo César Rossoni, Diogo Francisco Cirillo, Marcelo Ângelo Borém, Flávio Meira |
author_role |
author |
author2 |
Rossoni, Diogo Francisco Cirillo, Marcelo Ângelo Borém, Flávio Meira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ossani, Paulo César Rossoni, Diogo Francisco Cirillo, Marcelo Ângelo Borém, Flávio Meira |
dc.subject.por.fl_str_mv |
Supervised classification Classification models Sensory analysis. Clasificación supervisada Modelos de clasificación Análisis sensorial. Classificação supervisionada Modelos de classificação Análise sensorial. |
topic |
Supervised classification Classification models Sensory analysis. Clasificación supervisada Modelos de clasificación Análisis sensorial. Classificação supervisionada Modelos de classificação Análise sensorial. |
description |
Specialty coffees have a big importance in the economic scenario, and its sensory quality is appreciated by the productive sector and by the market. Researches have been constantly carried out in the search for better blends in order to add value and differentiate prices according to the product quality. To accomplish that, new methodologies must be explored, taking into consideration factors that might differentiate the particularities of each consumer and/or product. Thus, this article suggests the use of the machine learning technique in the construction of supervised classification and identification models. In a sensory evaluation test for consumer acceptance using four classes of specialty coffees, applied to four groups of trained and untrained consumers, features such as flavor, body, sweetness and general grade were evaluated. The use of machine learning is viable because it allows the classification and identification of specialty coffees produced in different altitudes and different processing methods. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/14732 10.33448/rsd-v10i5.14732 |
url |
https://rsdjournal.org/index.php/rsd/article/view/14732 |
identifier_str_mv |
10.33448/rsd-v10i5.14732 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/14732/13246 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 5; e13110514732 Research, Society and Development; Vol. 10 Núm. 5; e13110514732 Research, Society and Development; v. 10 n. 5; e13110514732 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052748578947072 |