Logistic Bayesian model in the study of the growth of tomatoes

Detalhes bibliográficos
Autor(a) principal: Mendes, Patrícia Neves
Data de Publicação: 2021
Outros Autores: Muniz, Joel Auguto, Savian, Taciana Villela, Sáfadi, Thelma, Jerônimo, Gabriel da Costa Cantos
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/13198
Resumo: Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature.
id UNIFEI_493179339d84677380fc6e0a421aef8d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/13198
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Logistic Bayesian model in the study of the growth of tomatoesModelo Logístico Bayesiano en el studio del crecimiento del tomatesModelo Logístico Bayesiano no estudo do crescimento de tomatesModelo no lineal Curva de crecimientoMetodología bayesiana.Nonlinear modelGrowth curveBayesian methodology.Modelo não linearCurva de crescimentoMetodologia Bayesiana.Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature.Conocer el crecimiento del tomate y sus frutos, medido por la acumulación de biomasa a lo largo del tiempo, es fundamental para el correcto manejo y detección de problemas en el desarrollo de los cultivos. Este crecimiento puede estudiarse mediante varios modelos de regresión no lineal que pueden utilizarse para facilitar la interpretación de los procesos involucrados en el sistema de producción vegetal. Entre los modelos empíricos que se utilizan a menudo para estimar el crecimiento de las plantas y sus componentes se encuentra la función logística. Uno de los métodos utilizados para estimar los parámetros de las curvas de crecimiento es el método bayesiano. Este estudio tuvo como objetivo aplicar la metodología bayesiana en la descripción de datos - reales y simulados - del crecimiento del diámetro del tomate, utilizando el modelo logístico no lineal. Los algoritmos muestreador de Gibbs y Metropolis-Hastings se implementaron utilizando el idioma R. La condición de convergencia de las cadenas se verificó utilizando el criterio de Raftery & Lewis, que está disponible en el paquete BOA (“Bayesian Output Analysis”) del software R. La metodología bayesiana demostró ser eficiente en la estimación de los parámetros de la curva de crecimiento, y las estimaciones fueron consistentes con los valores reportados en la literatura.Conhecer o crescimento do tomateiro e de seus frutos, medido através do acúmulo de biomassa ao longo do tempo, são fundamentais para o manejo adequado e a detecção de problemas no desenvolvimento das culturas. Este crescimento pode ser estudado por meio de vários modelos de regressão não linear que podem ser usados para facilitar a interpretação dos processos envolvidos no sistema de produção vegetal. Entre os modelos empíricos usados frequentemente para estimar o crescimento de plantas, e seus componentes, encontra-se a função logística. Um dos métodos utilizados para estimar os parâmetros das curvas de crescimento é o método bayesiano. Este estudo teve como objetivo aplicar a metodologia bayesiana na descrição dos dados – reais e simulados - de crescimento do diâmetro de tomates, utilizando o modelo não linear logístico. Os algoritmos para o amostrador de Gibbs e o Metropolis-Hastings foram implementados utilizando-se a linguagem R. A condição de convergência das cadeias foi verificada por meio do critério de Raftery & Lewis, que está disponível no pacote BOA (“Bayesian Output Analysis”) do software R. A metodologia bayesiana mostrou-se eficiente na estimação dos parâmetros da curva de crescimento, e as estimativas mostraram-se coerentes com os valores relatados na literatura.Research, Society and Development2021-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1319810.33448/rsd-v10i3.13198Research, Society and Development; Vol. 10 No. 3; e22710313198Research, Society and Development; Vol. 10 Núm. 3; e22710313198Research, Society and Development; v. 10 n. 3; e227103131982525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/13198/11929Copyright (c) 2021 Patrícia Neves Mendes; Joel Auguto Muniz; Taciana Villela Savian; Thelma Sáfadi; Gabriel da Costa Cantos Jerônimohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess Mendes, Patrícia NevesMuniz, Joel Auguto Savian, Taciana VillelaSáfadi, Thelma Jerônimo, Gabriel da Costa Cantos2021-03-28T12:03:35Zoai:ojs.pkp.sfu.ca:article/13198Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:34:35.975070Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Logistic Bayesian model in the study of the growth of tomatoes
Modelo Logístico Bayesiano en el studio del crecimiento del tomates
Modelo Logístico Bayesiano no estudo do crescimento de tomates
title Logistic Bayesian model in the study of the growth of tomatoes
spellingShingle Logistic Bayesian model in the study of the growth of tomatoes
Mendes, Patrícia Neves
Modelo no lineal
Curva de crecimiento
Metodología bayesiana.
Nonlinear model
Growth curve
Bayesian methodology.
Modelo não linear
Curva de crescimento
Metodologia Bayesiana.
title_short Logistic Bayesian model in the study of the growth of tomatoes
title_full Logistic Bayesian model in the study of the growth of tomatoes
title_fullStr Logistic Bayesian model in the study of the growth of tomatoes
title_full_unstemmed Logistic Bayesian model in the study of the growth of tomatoes
title_sort Logistic Bayesian model in the study of the growth of tomatoes
author Mendes, Patrícia Neves
author_facet Mendes, Patrícia Neves
Muniz, Joel Auguto
Savian, Taciana Villela
Sáfadi, Thelma
Jerônimo, Gabriel da Costa Cantos
author_role author
author2 Muniz, Joel Auguto
Savian, Taciana Villela
Sáfadi, Thelma
Jerônimo, Gabriel da Costa Cantos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Mendes, Patrícia Neves
Muniz, Joel Auguto
Savian, Taciana Villela
Sáfadi, Thelma
Jerônimo, Gabriel da Costa Cantos
dc.subject.por.fl_str_mv Modelo no lineal
Curva de crecimiento
Metodología bayesiana.
Nonlinear model
Growth curve
Bayesian methodology.
Modelo não linear
Curva de crescimento
Metodologia Bayesiana.
topic Modelo no lineal
Curva de crecimiento
Metodología bayesiana.
Nonlinear model
Growth curve
Bayesian methodology.
Modelo não linear
Curva de crescimento
Metodologia Bayesiana.
description Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/13198
10.33448/rsd-v10i3.13198
url https://rsdjournal.org/index.php/rsd/article/view/13198
identifier_str_mv 10.33448/rsd-v10i3.13198
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/13198/11929
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 3; e22710313198
Research, Society and Development; Vol. 10 Núm. 3; e22710313198
Research, Society and Development; v. 10 n. 3; e22710313198
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052805800787968