Logistic Bayesian model in the study of the growth of tomatoes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/13198 |
Resumo: | Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature. |
id |
UNIFEI_493179339d84677380fc6e0a421aef8d |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/13198 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Logistic Bayesian model in the study of the growth of tomatoesModelo Logístico Bayesiano en el studio del crecimiento del tomatesModelo Logístico Bayesiano no estudo do crescimento de tomatesModelo no lineal Curva de crecimientoMetodología bayesiana.Nonlinear modelGrowth curveBayesian methodology.Modelo não linearCurva de crescimentoMetodologia Bayesiana.Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature.Conocer el crecimiento del tomate y sus frutos, medido por la acumulación de biomasa a lo largo del tiempo, es fundamental para el correcto manejo y detección de problemas en el desarrollo de los cultivos. Este crecimiento puede estudiarse mediante varios modelos de regresión no lineal que pueden utilizarse para facilitar la interpretación de los procesos involucrados en el sistema de producción vegetal. Entre los modelos empíricos que se utilizan a menudo para estimar el crecimiento de las plantas y sus componentes se encuentra la función logística. Uno de los métodos utilizados para estimar los parámetros de las curvas de crecimiento es el método bayesiano. Este estudio tuvo como objetivo aplicar la metodología bayesiana en la descripción de datos - reales y simulados - del crecimiento del diámetro del tomate, utilizando el modelo logístico no lineal. Los algoritmos muestreador de Gibbs y Metropolis-Hastings se implementaron utilizando el idioma R. La condición de convergencia de las cadenas se verificó utilizando el criterio de Raftery & Lewis, que está disponible en el paquete BOA (“Bayesian Output Analysis”) del software R. La metodología bayesiana demostró ser eficiente en la estimación de los parámetros de la curva de crecimiento, y las estimaciones fueron consistentes con los valores reportados en la literatura.Conhecer o crescimento do tomateiro e de seus frutos, medido através do acúmulo de biomassa ao longo do tempo, são fundamentais para o manejo adequado e a detecção de problemas no desenvolvimento das culturas. Este crescimento pode ser estudado por meio de vários modelos de regressão não linear que podem ser usados para facilitar a interpretação dos processos envolvidos no sistema de produção vegetal. Entre os modelos empíricos usados frequentemente para estimar o crescimento de plantas, e seus componentes, encontra-se a função logística. Um dos métodos utilizados para estimar os parâmetros das curvas de crescimento é o método bayesiano. Este estudo teve como objetivo aplicar a metodologia bayesiana na descrição dos dados – reais e simulados - de crescimento do diâmetro de tomates, utilizando o modelo não linear logístico. Os algoritmos para o amostrador de Gibbs e o Metropolis-Hastings foram implementados utilizando-se a linguagem R. A condição de convergência das cadeias foi verificada por meio do critério de Raftery & Lewis, que está disponível no pacote BOA (“Bayesian Output Analysis”) do software R. A metodologia bayesiana mostrou-se eficiente na estimação dos parâmetros da curva de crescimento, e as estimativas mostraram-se coerentes com os valores relatados na literatura.Research, Society and Development2021-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1319810.33448/rsd-v10i3.13198Research, Society and Development; Vol. 10 No. 3; e22710313198Research, Society and Development; Vol. 10 Núm. 3; e22710313198Research, Society and Development; v. 10 n. 3; e227103131982525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/13198/11929Copyright (c) 2021 Patrícia Neves Mendes; Joel Auguto Muniz; Taciana Villela Savian; Thelma Sáfadi; Gabriel da Costa Cantos Jerônimohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess Mendes, Patrícia NevesMuniz, Joel Auguto Savian, Taciana VillelaSáfadi, Thelma Jerônimo, Gabriel da Costa Cantos2021-03-28T12:03:35Zoai:ojs.pkp.sfu.ca:article/13198Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:34:35.975070Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Logistic Bayesian model in the study of the growth of tomatoes Modelo Logístico Bayesiano en el studio del crecimiento del tomates Modelo Logístico Bayesiano no estudo do crescimento de tomates |
title |
Logistic Bayesian model in the study of the growth of tomatoes |
spellingShingle |
Logistic Bayesian model in the study of the growth of tomatoes Mendes, Patrícia Neves Modelo no lineal Curva de crecimiento Metodología bayesiana. Nonlinear model Growth curve Bayesian methodology. Modelo não linear Curva de crescimento Metodologia Bayesiana. |
title_short |
Logistic Bayesian model in the study of the growth of tomatoes |
title_full |
Logistic Bayesian model in the study of the growth of tomatoes |
title_fullStr |
Logistic Bayesian model in the study of the growth of tomatoes |
title_full_unstemmed |
Logistic Bayesian model in the study of the growth of tomatoes |
title_sort |
Logistic Bayesian model in the study of the growth of tomatoes |
author |
Mendes, Patrícia Neves |
author_facet |
Mendes, Patrícia Neves Muniz, Joel Auguto Savian, Taciana Villela Sáfadi, Thelma Jerônimo, Gabriel da Costa Cantos |
author_role |
author |
author2 |
Muniz, Joel Auguto Savian, Taciana Villela Sáfadi, Thelma Jerônimo, Gabriel da Costa Cantos |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Mendes, Patrícia Neves Muniz, Joel Auguto Savian, Taciana Villela Sáfadi, Thelma Jerônimo, Gabriel da Costa Cantos |
dc.subject.por.fl_str_mv |
Modelo no lineal Curva de crecimiento Metodología bayesiana. Nonlinear model Growth curve Bayesian methodology. Modelo não linear Curva de crescimento Metodologia Bayesiana. |
topic |
Modelo no lineal Curva de crecimiento Metodología bayesiana. Nonlinear model Growth curve Bayesian methodology. Modelo não linear Curva de crescimento Metodologia Bayesiana. |
description |
Knowing the growth of tomato and its fruits, as measured by biomass accumulation over time is essential for the proper handling and detection of problems in the development of crops. This growth can be studied using various models of non-linear regression that can be used to facilitate interpretation of the processes involved in plant production system. Among the empirical models often used to estimate the growth of plants and their components is the function Logistic. One method used to estimate the parameters of the growth rate is the Bayesian method. The study objective to apply the Bayesian approach in describing the data – real and simulated – the diameter growth of tomatoes, using the model Logistic. The algorithms for the Gibbs Sampler and Metropolis – Hastings were implemented using the R language. The condition of convergence of the chains was checked using the criteria suggested by Nogueira, Sáfadi and Ferreira (2004) available on the R software package BOA. The Bayesian approach was efficient, since it was evaluated and verified by the simulation process, with very close estimates of the parametric value, and estimates were shown to be consistent with the values reported in literature. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/13198 10.33448/rsd-v10i3.13198 |
url |
https://rsdjournal.org/index.php/rsd/article/view/13198 |
identifier_str_mv |
10.33448/rsd-v10i3.13198 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/13198/11929 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 3; e22710313198 Research, Society and Development; Vol. 10 Núm. 3; e22710313198 Research, Society and Development; v. 10 n. 3; e22710313198 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052805800787968 |