Non-linear bayesian model applied to the population’s prediction of states of Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/5558 |
Resumo: | The data are adjusted through a non-linear combination of parameters in non-linear models. Bayesian inference is an important tool that can be applied to this type of model. Growth data is essentially non-linear, thus making it possible to use this technique in your analysis; given that the Bayesian theory has a great advantage of providing the prediction of probabilities in a direct way. Brazilian municipalities receive federal government resources based on demographic statistical data collected every ten years by the Brazilian Institute of Geography and Statistics (IBGE), as well as surveys carried out periodically by sampling in households, thus obtaining annual information on demographic characteristics and socioeconomic status of the population called the National Household Sample Survey (PNAD). The objective of this work is to estimate the Brazilian population growth in the states and federal district for the years 2016 and 2020, based on the demographic results of the Censuses for the years 1991, 2000, 2010 and 2012; making use of an asymptotic model, the exponential with three parameters. The Bayesian model was used to estimate the parameters. With the application of such techniques, it was possible to obtain predictions of changes in the Brazilian population contingent by state, for the respective years (2016 and 2020). The North and Midwest regions showed a significant increase in their populations. Lower population rates were seen in coastal regions. |
id |
UNIFEI_ec15c0afbd937fe4381b307f608c051f |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/5558 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Non-linear bayesian model applied to the population’s prediction of states of BrazilModelo no lineal bayesiano aplicado a pronósticos de población para estados brasileñosModelo não linear bayesiano aplicado a previsão populacional para os estados brasileirosInferencia bayesianaCrecimiento de la poblaciónCurvas de crecimiento.Inferência BayesianaCrescimento PopulacionalCurvas de Crescimento.Bayesian InferencePopulational growthGrowth curves.The data are adjusted through a non-linear combination of parameters in non-linear models. Bayesian inference is an important tool that can be applied to this type of model. Growth data is essentially non-linear, thus making it possible to use this technique in your analysis; given that the Bayesian theory has a great advantage of providing the prediction of probabilities in a direct way. Brazilian municipalities receive federal government resources based on demographic statistical data collected every ten years by the Brazilian Institute of Geography and Statistics (IBGE), as well as surveys carried out periodically by sampling in households, thus obtaining annual information on demographic characteristics and socioeconomic status of the population called the National Household Sample Survey (PNAD). The objective of this work is to estimate the Brazilian population growth in the states and federal district for the years 2016 and 2020, based on the demographic results of the Censuses for the years 1991, 2000, 2010 and 2012; making use of an asymptotic model, the exponential with three parameters. The Bayesian model was used to estimate the parameters. With the application of such techniques, it was possible to obtain predictions of changes in the Brazilian population contingent by state, for the respective years (2016 and 2020). The North and Midwest regions showed a significant increase in their populations. Lower population rates were seen in coastal regions.En los modelos no lineales, los datos se ajustan a través de una combinación no lineal de parámetros. La inferencia bayesiana es una herramienta importante que se puede aplicar a este tipo de modelo. Los datos de crecimiento son esencialmente no lineales, lo que permite utilizar esta técnica en su análisis; dado que la teoría bayesiana tiene una gran ventaja al proporcionar la predicción de probabilidades de manera directa. Los municipios brasileños reciben recursos del gobierno federal basados en datos estadísticos demográficos recopilados cada diez años por el Instituto Brasileño de Geografía y Estadística (IBGE), así como encuestas realizadas periódicamente por muestreo en hogares, obteniendo así información anual sobre características demográficas y estado socioeconómico de la población llamada Encuesta Nacional de Muestra de Hogares (PNAD). El objetivo de este trabajo es estimar el crecimiento de la población brasileña en los estados y distritos federales para los años 2016 y 2020, con base en los resultados demográficos de los Censos para los años 1991, 2000, 2010 y 2012; haciendo uso de un modelo asintótico, el exponencial con tres parámetros. El modelo bayesiano se utilizó para estimar los parámetros. Con la aplicación de tales técnicas, fue posible obtener predicciones de cambios en la población brasileña contingente por estado, para los años respectivos (2016 y 2020). Las regiones del norte y medio oeste mostraron un aumento significativo en sus poblaciones. Se observaron tasas de población más bajas en las regiones costeras.Nos modelos não lineares os dados são ajustados através de uma combinação não linear dos parâmetros. A inferência bayesiana é uma importante ferramenta que pode ser aplicada a este tipo de modelo. Dados de crescimento são essencialmente não lineares, possibilitando assim o uso dessa técnica em suas análises; haja vista que a teoria bayesiana tem grande vantagem de propiciar a previsão de probabilidades de modo direto. Os municípios brasileiros recebem recursos governamentais federais com base em dados estatísticos demográficos coletados a cada dez anos pelo Instituto Brasileiro de Geografia e Estatística (IBGE) como também, com levantamentos feitos periodicamente por amostragens em domicílios, obtendo-se assim informações anuais sobre características demográficas e socioeconômicas da população denominadas por Pesquisa Nacional por Amostra de Domicílios (PNAD). O objetivo desse trabalho é estimar o crescimento populacional brasileiro nos estados e distrito federal referente aos anos de 2016 e 2020, tendo por base resultados demográficos dos Censos relativos aos anos de 1991, 2000, 2010 e 2012; fazendo-se uso de um modelo assintótico, o exponencial com três parâmetros. O modelo bayesiano foi utilizado para a estimação dos parâmetros. Com a aplicação de tais técnicas foi possível obter previsões de mudanças no contingente populacional brasileiro por estado, para os respectivos anos (2016 e 2020). As regiões Norte e Centro-Oeste demonstraram um aumento significativo em suas populações. Taxas populacionais menores foram verificadas em regiões litorâneas.Research, Society and Development2020-07-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/555810.33448/rsd-v9i8.5558Research, Society and Development; Vol. 9 No. 8; e580985558Research, Society and Development; Vol. 9 Núm. 8; e580985558Research, Society and Development; v. 9 n. 8; e5809855582525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/5558/5180Copyright (c) 2020 Mácio Augusto Albuquerque, Klebe Napoleão N. Oliveira Barroshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBarros, Kleber Napoleão Nunes de OliveiraAlbuquerque, Mácio Augusto deFernandes, Maria da Conceição Lacerda2020-08-20T18:00:17Zoai:ojs.pkp.sfu.ca:article/5558Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:29:02.534832Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Non-linear bayesian model applied to the population’s prediction of states of Brazil Modelo no lineal bayesiano aplicado a pronósticos de población para estados brasileños Modelo não linear bayesiano aplicado a previsão populacional para os estados brasileiros |
title |
Non-linear bayesian model applied to the population’s prediction of states of Brazil |
spellingShingle |
Non-linear bayesian model applied to the population’s prediction of states of Brazil Barros, Kleber Napoleão Nunes de Oliveira Inferencia bayesiana Crecimiento de la población Curvas de crecimiento. Inferência Bayesiana Crescimento Populacional Curvas de Crescimento. Bayesian Inference Populational growth Growth curves. |
title_short |
Non-linear bayesian model applied to the population’s prediction of states of Brazil |
title_full |
Non-linear bayesian model applied to the population’s prediction of states of Brazil |
title_fullStr |
Non-linear bayesian model applied to the population’s prediction of states of Brazil |
title_full_unstemmed |
Non-linear bayesian model applied to the population’s prediction of states of Brazil |
title_sort |
Non-linear bayesian model applied to the population’s prediction of states of Brazil |
author |
Barros, Kleber Napoleão Nunes de Oliveira |
author_facet |
Barros, Kleber Napoleão Nunes de Oliveira Albuquerque, Mácio Augusto de Fernandes, Maria da Conceição Lacerda |
author_role |
author |
author2 |
Albuquerque, Mácio Augusto de Fernandes, Maria da Conceição Lacerda |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Barros, Kleber Napoleão Nunes de Oliveira Albuquerque, Mácio Augusto de Fernandes, Maria da Conceição Lacerda |
dc.subject.por.fl_str_mv |
Inferencia bayesiana Crecimiento de la población Curvas de crecimiento. Inferência Bayesiana Crescimento Populacional Curvas de Crescimento. Bayesian Inference Populational growth Growth curves. |
topic |
Inferencia bayesiana Crecimiento de la población Curvas de crecimiento. Inferência Bayesiana Crescimento Populacional Curvas de Crescimento. Bayesian Inference Populational growth Growth curves. |
description |
The data are adjusted through a non-linear combination of parameters in non-linear models. Bayesian inference is an important tool that can be applied to this type of model. Growth data is essentially non-linear, thus making it possible to use this technique in your analysis; given that the Bayesian theory has a great advantage of providing the prediction of probabilities in a direct way. Brazilian municipalities receive federal government resources based on demographic statistical data collected every ten years by the Brazilian Institute of Geography and Statistics (IBGE), as well as surveys carried out periodically by sampling in households, thus obtaining annual information on demographic characteristics and socioeconomic status of the population called the National Household Sample Survey (PNAD). The objective of this work is to estimate the Brazilian population growth in the states and federal district for the years 2016 and 2020, based on the demographic results of the Censuses for the years 1991, 2000, 2010 and 2012; making use of an asymptotic model, the exponential with three parameters. The Bayesian model was used to estimate the parameters. With the application of such techniques, it was possible to obtain predictions of changes in the Brazilian population contingent by state, for the respective years (2016 and 2020). The North and Midwest regions showed a significant increase in their populations. Lower population rates were seen in coastal regions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-16 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/5558 10.33448/rsd-v9i8.5558 |
url |
https://rsdjournal.org/index.php/rsd/article/view/5558 |
identifier_str_mv |
10.33448/rsd-v9i8.5558 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/5558/5180 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Mácio Augusto Albuquerque, Klebe Napoleão N. Oliveira Barros http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Mácio Augusto Albuquerque, Klebe Napoleão N. Oliveira Barros http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 8; e580985558 Research, Society and Development; Vol. 9 Núm. 8; e580985558 Research, Society and Development; v. 9 n. 8; e580985558 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052737593016320 |