Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/4077 |
Resumo: | The presence of metals in industrial effluents has become a major environmental problem since these residues are often disposed of in lakes or rivers. Aiming to recover contaminated areas the remediation by washing using biosurfactants appears as an alternative technique that features low toxicity to the environment. This paper aims to evaluate the efficiency in iron removal within a synthetic effluent, utilizing a biosurfactant. This was produced in a bioreactor (37°C, 200 rpm, 0.5 vvm) derived from a papaya peel aqueous extract and the Bacillus subtilis UFPEDA strain 86. The fermentation tests revealed that this Bacillus is a great producer for the biosurfactant. The tests also displayed that the papaya peel extract is a viable substrate for the production of biosurfactant by this strain. Among the results found, in 24 hours of cultivation, the highest concentration of biomass and product was obtained, of 2.17 ± 0.04 g.L-1 and 2.88 ± 0.01 g.L-1, respectively. The biosurfactant provided a Critical Micellar Concentration (CMC) of 20 mg.L-1. The batch method was used in the obtainment of removal data, in which a series of solutions at different concentrations of iron ions were exposed to different amounts of biosurfactant, both raw and purified, at a temperature of 25 °C, under agitation (200 rpm) and pH ~ 6.3. A multivariate experimental design was carried out in the presence of crude and purified biosurfactant. The results demonstrated significant interactions involved for the following independent variables: concentration of iron ions, concentration of biosurfactant and the treatment time. The iron removal percentages varied between 47.2% and 95.82% in the presence of the raw biosurfactant, and between 37.01% to 91.94% in the presence of the purified surfactant. The Langmuir adsorption model was the better adjusted, providing a maximum adsorption capacity at approximately 10 mg.g-1. |
id |
UNIFEI_50650ff7ca9ed3e947f5606d4bfc51a4 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/4077 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorptionProducción de surfactina utilizando extracto acuoso de la cáscara de papaya como sustrato y su aplicación para la adsorción de hierroProdução de surfactina utilizando extrato aquoso da casca de papaya como substrato e sua aplicação para adsorção de ferroBacillus subtilisBiossurfactanteAdsorçãoFerroBacillus subtilisBiosurfactantAdsorptionIron.Bacillus subtilisBiosurfactanteAdsorciónHierroThe presence of metals in industrial effluents has become a major environmental problem since these residues are often disposed of in lakes or rivers. Aiming to recover contaminated areas the remediation by washing using biosurfactants appears as an alternative technique that features low toxicity to the environment. This paper aims to evaluate the efficiency in iron removal within a synthetic effluent, utilizing a biosurfactant. This was produced in a bioreactor (37°C, 200 rpm, 0.5 vvm) derived from a papaya peel aqueous extract and the Bacillus subtilis UFPEDA strain 86. The fermentation tests revealed that this Bacillus is a great producer for the biosurfactant. The tests also displayed that the papaya peel extract is a viable substrate for the production of biosurfactant by this strain. Among the results found, in 24 hours of cultivation, the highest concentration of biomass and product was obtained, of 2.17 ± 0.04 g.L-1 and 2.88 ± 0.01 g.L-1, respectively. The biosurfactant provided a Critical Micellar Concentration (CMC) of 20 mg.L-1. The batch method was used in the obtainment of removal data, in which a series of solutions at different concentrations of iron ions were exposed to different amounts of biosurfactant, both raw and purified, at a temperature of 25 °C, under agitation (200 rpm) and pH ~ 6.3. A multivariate experimental design was carried out in the presence of crude and purified biosurfactant. The results demonstrated significant interactions involved for the following independent variables: concentration of iron ions, concentration of biosurfactant and the treatment time. The iron removal percentages varied between 47.2% and 95.82% in the presence of the raw biosurfactant, and between 37.01% to 91.94% in the presence of the purified surfactant. The Langmuir adsorption model was the better adjusted, providing a maximum adsorption capacity at approximately 10 mg.g-1.La presencia de metales en los efluentes industriales se ha convertido en un problema ambiental importante ya que estos residuos a menudo se eliminan en lagos o ríos. Con el objetivo de recuperar áreas contaminadas, la remediación mediante el lavado con biosurfactantes aparece como una técnica alternativa que presenta baja toxicidad para el medio ambiente. El presente trabajo tuvo como objetivo evaluar la eficiencia en la eliminación de hierro en un efluente sintético, utilizando un biosurfactante producido en un biorreactor (37°C, 200 rpm, 0.5 vvm), del extracto acuoso de la cáscara de papaya y la cepa de Bacillus subtilis UFPEDA 86. Las pruebas fermentativas mostraron que este Bacillus es un buen productor de biosurfactantes y que el extracto de la cáscara de papaya es un sustrato viable para la producción de biosurfactantes por esta cepa. Entre los resultados encontrados, en 24 horas de cultivo, se obtuvo la mayor concentración de biomasa y producto, de 2.17 ± 0.04 g.L-1 y 2.88 ± 0.01 g.L-1, respectivamente. El biosurfactante producido mostró una concentración micelar crítica (CMC) de 20 mg.L-1. SEl método por lotes se utilizó en la obtención de datos de eliminación, en el que una serie de soluciones a diferentes concentraciones de iones de hierro se expusieron a diferentes cantidades de biosurfactantes, tanto crudos como purificados, a una temperatura de 25 ° C, bajo agitación (200 rpm) y pH ~ 6.3. E llevó a cabo una planificación experimental multivariada, en presencia de biosurfactante crudo y purificado, donde los resultados mostraron que las interacciones entre las variables independientes (concentración de iones de hierro, concentración de biosurfactante y el tiempo de tratamiento) fueron significativas para ambos. Los porcentajes de eliminación de hierro variaron entre 47.2 y 95.82%, en presencia del bisurfactante crudo y de 37.01 a 91.94% en presencia del biosurfactante purificado. El modelo de adsorción de Langmuir fue el mejor ajustado, con la capacidad de adsorción máxima estimada en 10 mg.g-1.A presença de metais em efluentes industriais tornou-se um grande problema ambiental, uma vez que esses resíduos são frequentemente descartados em lagos ou rios. Com o objetivo de recuperar áreas contaminadas, a remediação por lavagem com biossurfactantes aparece como uma alternativa que apresenta baixa toxicidade para o meio ambiente. O presente trabalho objetivou avaliar a eficiência na remoção do ferro em um efluente sintético, utilizando um biossurfactante produzido em um biorreator (37°C, 200 rpm, 0.5 vvm), a partir do extrato aquoso da casca de mamão e da cepa Bacillus subtilis UFPEDA 86. Os ensaios fermentativos mostraram que esse Bacillus é um bom produtor de biossurfactante e que o extrato da casca de mamão é um substrato viável para a produção de biossurfactante por esta cepa. Dentre os resultados encontrados, em 24 horas de cultivo, obteve-se a maior concentração de biomassa e produto, de 2,17 ± 0,04 g.L-1 e 2,88 ± 0,01 g.L-1, respectivamente. O biossurfactante produzido apresentou Concentração Micelar Crítica (CMC) de 20 mg.L-1. Ensaios em batelada foram utilizados para obtenção dos dados de remoção, nos quais uma série de soluções em diferentes concentrações de íons de ferro foram expostas a diferentes quantidades de biossurfactante, bruto e purificado, a uma temperatura de 25 ° C, sob agitação (200 rpm) e pH ~ 6,3. Foi realizado um planejamento experimental multivariado, na presença de biossurfactante bruto e purificado, onde os resultados mostraram que as interações entre as variáveis independentes (concentração dos íons de ferro, concentração de biossurfactante e o tempo de tratamento) foram significantes para ambos. As porcentagens de remoção do ferro variaram entre 47,2 e 95,82%, na presença do bissurfactante bruto e de 37,01 a 91,94% na presença do biossurfactante purificado. O modelo de adsorção de Langmuir foi o melhor ajustado, sendo a capacidade máxima de adsorção estimada em 10 mg.g-1.Research, Society and Development2020-05-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/407710.33448/rsd-v9i7.4077Research, Society and Development; Vol. 9 No. 7; e437974077Research, Society and Development; Vol. 9 Núm. 7; e437974077Research, Society and Development; v. 9 n. 7; e4379740772525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/4077/3587Copyright (c) 2020 Andressa de Araujo Freire, George Simonelli, Denilson de Jesus Assis, Janice Izabel Druzian, Ana Katerine de Carvalho Lima Lobatoinfo:eu-repo/semantics/openAccessFreire, Andressa de AraujoSimonelli, GeorgeAssis, Denilson de JesusDruzian, Janice IzabelLobato, Ana Katerine de Carvalho Lima2020-08-20T18:05:03Zoai:ojs.pkp.sfu.ca:article/4077Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:28:03.424510Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption Producción de surfactina utilizando extracto acuoso de la cáscara de papaya como sustrato y su aplicación para la adsorción de hierro Produção de surfactina utilizando extrato aquoso da casca de papaya como substrato e sua aplicação para adsorção de ferro |
title |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption |
spellingShingle |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption Freire, Andressa de Araujo Bacillus subtilis Biossurfactante Adsorção Ferro Bacillus subtilis Biosurfactant Adsorption Iron. Bacillus subtilis Biosurfactante Adsorción Hierro |
title_short |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption |
title_full |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption |
title_fullStr |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption |
title_full_unstemmed |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption |
title_sort |
Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption |
author |
Freire, Andressa de Araujo |
author_facet |
Freire, Andressa de Araujo Simonelli, George Assis, Denilson de Jesus Druzian, Janice Izabel Lobato, Ana Katerine de Carvalho Lima |
author_role |
author |
author2 |
Simonelli, George Assis, Denilson de Jesus Druzian, Janice Izabel Lobato, Ana Katerine de Carvalho Lima |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Freire, Andressa de Araujo Simonelli, George Assis, Denilson de Jesus Druzian, Janice Izabel Lobato, Ana Katerine de Carvalho Lima |
dc.subject.por.fl_str_mv |
Bacillus subtilis Biossurfactante Adsorção Ferro Bacillus subtilis Biosurfactant Adsorption Iron. Bacillus subtilis Biosurfactante Adsorción Hierro |
topic |
Bacillus subtilis Biossurfactante Adsorção Ferro Bacillus subtilis Biosurfactant Adsorption Iron. Bacillus subtilis Biosurfactante Adsorción Hierro |
description |
The presence of metals in industrial effluents has become a major environmental problem since these residues are often disposed of in lakes or rivers. Aiming to recover contaminated areas the remediation by washing using biosurfactants appears as an alternative technique that features low toxicity to the environment. This paper aims to evaluate the efficiency in iron removal within a synthetic effluent, utilizing a biosurfactant. This was produced in a bioreactor (37°C, 200 rpm, 0.5 vvm) derived from a papaya peel aqueous extract and the Bacillus subtilis UFPEDA strain 86. The fermentation tests revealed that this Bacillus is a great producer for the biosurfactant. The tests also displayed that the papaya peel extract is a viable substrate for the production of biosurfactant by this strain. Among the results found, in 24 hours of cultivation, the highest concentration of biomass and product was obtained, of 2.17 ± 0.04 g.L-1 and 2.88 ± 0.01 g.L-1, respectively. The biosurfactant provided a Critical Micellar Concentration (CMC) of 20 mg.L-1. The batch method was used in the obtainment of removal data, in which a series of solutions at different concentrations of iron ions were exposed to different amounts of biosurfactant, both raw and purified, at a temperature of 25 °C, under agitation (200 rpm) and pH ~ 6.3. A multivariate experimental design was carried out in the presence of crude and purified biosurfactant. The results demonstrated significant interactions involved for the following independent variables: concentration of iron ions, concentration of biosurfactant and the treatment time. The iron removal percentages varied between 47.2% and 95.82% in the presence of the raw biosurfactant, and between 37.01% to 91.94% in the presence of the purified surfactant. The Langmuir adsorption model was the better adjusted, providing a maximum adsorption capacity at approximately 10 mg.g-1. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/4077 10.33448/rsd-v9i7.4077 |
url |
https://rsdjournal.org/index.php/rsd/article/view/4077 |
identifier_str_mv |
10.33448/rsd-v9i7.4077 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/4077/3587 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 7; e437974077 Research, Society and Development; Vol. 9 Núm. 7; e437974077 Research, Society and Development; v. 9 n. 7; e437974077 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052649199108096 |