Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco

Detalhes bibliográficos
Autor(a) principal: Holanda, Maria Julia de Oliveira
Data de Publicação: 2021
Outros Autores: Ferreira, Silvio Romero de Melo, Amorim, Samuel Franca, Borges, Jesce John Silva, Silva, Larissa Ferreira da
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/22541
Resumo: Collapsible and expansive soils are problematic in Civil Engineering, causing pathologies in buildings due to the variation in volume with the change in humidity. The identification of these soils in the design phase is important. The paper aims to develop an Artificial Neural Network architecture trained with soils from Pernambuco, to identify expansive and collapsible soils, and expand its application to soils from other states in Northeastern Brazil. Developed from 87 samples, divided between training (53 samples), selection (17 samples) and test (17 samples) groups, according to 4 input variables, percentage of sand, percentage of clay, plasticity and activity indices. The best network architecture consists of 4 neurons at the input and 1 at the output. For the blind validation of the model, the network was applied to 45 samples of collapsible and expansive soils from other Northeastern states. The performance analysis of the classification accuracy of the network with data from Pernambuco showed an accuracy rate of 76.5% and in the validation in the other Northeastern states, pattern recognition was even higher, reaching an accuracy of 91.1%, demonstrating capacity capturing trends in soil surface movement and aiding in problem solving.
id UNIFEI_5241f0499991350e808ffa78324cf325
oai_identifier_str oai:ojs.pkp.sfu.ca:article/22541
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in PernambucoIdentificación de suelos expansivos y colapsables en el noreste de Brasil a partir de Redes Neuronales Artificiales generadas en PernambucoIdentificação de solos expansivos e colapsíveis no Nordeste brasileiro a partir de Redes Neurais Artificiais geradas em PernambucoExpansive SoilsCollapsible SoilsArtificial Neural NetworksClassification equation.Suelos ExpansivosSuelos ColapsablesRedes Neuronales ArtificialesEcuación de clasificación.Solos ExpansivosSolos ColapsíveisRedes Neurais ArtificiaisEquação de classificação.Collapsible and expansive soils are problematic in Civil Engineering, causing pathologies in buildings due to the variation in volume with the change in humidity. The identification of these soils in the design phase is important. The paper aims to develop an Artificial Neural Network architecture trained with soils from Pernambuco, to identify expansive and collapsible soils, and expand its application to soils from other states in Northeastern Brazil. Developed from 87 samples, divided between training (53 samples), selection (17 samples) and test (17 samples) groups, according to 4 input variables, percentage of sand, percentage of clay, plasticity and activity indices. The best network architecture consists of 4 neurons at the input and 1 at the output. For the blind validation of the model, the network was applied to 45 samples of collapsible and expansive soils from other Northeastern states. The performance analysis of the classification accuracy of the network with data from Pernambuco showed an accuracy rate of 76.5% and in the validation in the other Northeastern states, pattern recognition was even higher, reaching an accuracy of 91.1%, demonstrating capacity capturing trends in soil surface movement and aiding in problem solving.Los suelos colapsables y expansivos son problemáticos en la Ingeniería Civil, provocando patologías en los edificios debido a la variación de volumen con el cambio de humedad. La identificación de estos suelos en la fase de diseño es importante. El artículo tiene como objetivo desarrollar una arquitectura de Red Neural Artificial entrenada con suelos de Pernambuco, para identificar suelos expansivos y colapsables, y ampliar su aplicación a suelos de otros estados del noreste de Brasil. Desarrollado a partir de 87 muestras, divididas entre los grupos de entrenamiento (53 muestras), selección (17 muestras) y prueba (17 muestras), según 4 variables de entrada, porcentaje de arena, porcentaje de arcilla, índices de plasticidad y actividad. La mejor arquitectura de red consta de 4 neuronas en la entrada y 1 en la salida. Para la validación ciega del modelo, se aplicó la red a 45 muestras de suelos colapsables y expansivos de otros estados del Noreste. El análisis de desempeño de la precisión de clasificación de la red con datos de Pernambuco arrojó una tasa de precisión del 76.5% y en la validación en los otros estados del Noreste, el reconocimiento de patrones fue aún mayor, alcanzando una precisión del 91.1%, demostrando capacidad de captura de tendencias en el movimiento de la superficie del suelo y ayudar en la resolución de problemas.Solos colapsíveis e expansivos são problemáticos na Engenharia Civil causando patologias nas edificações devido à variação de volume com a mudança de umidade. A identificação desses solos na fase de projeto é importante. O artigo visa elaborar uma arquitetura de Rede Neural Artificial treinada com solos de Pernambuco, para identificação de solos expansivos e colapsíveis, e ampliar sua aplicação à solos dos demais estados do Nordeste brasileiro. Desenvolvida a partir de 87 amostras, divididas entre grupos de treinamento (53 amostras), seleção (17 amostras) e teste (17 amostras), segundo 4 variáveis de entrada porcentagem de areia, porcentagem de argila, índices de plasticidade e atividade. A melhor arquitetura da rede consiste em 4 neurônios na entrada e 1 na saída. Para a validação às cegas do modelo, a rede foi aplicada a 45 amostras de solos colapsíveis e expansivos de demais estados do Nordeste. A análise de desempenho da precisão de classificação da rede com dados de Pernambuco apresentou uma taxa de acurácia de 76,5% e na validação nos demais estados do Nordeste o reconhecimento de padrões foi ainda maior, atingindo acurácia de 91,1%, demonstrando capacidade de capturar tendências no movimento da superfície do solo e auxiliando na resolução de problemas.Research, Society and Development2021-11-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2254110.33448/rsd-v10i15.22541Research, Society and Development; Vol. 10 No. 15; e110101522541Research, Society and Development; Vol. 10 Núm. 15; e110101522541Research, Society and Development; v. 10 n. 15; e1101015225412525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/22541/20134Copyright (c) 2021 Maria Julia de Oliveira Holanda; Silvio Romero de Melo Ferreira; Samuel Franca Amorim; Jesce John Silva Borges; Larissa Ferreira da Silvahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessHolanda, Maria Julia de OliveiraFerreira, Silvio Romero de MeloAmorim, Samuel FrancaBorges, Jesce John SilvaSilva, Larissa Ferreira da 2021-12-06T10:13:53Zoai:ojs.pkp.sfu.ca:article/22541Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:41:40.762686Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
Identificación de suelos expansivos y colapsables en el noreste de Brasil a partir de Redes Neuronales Artificiales generadas en Pernambuco
Identificação de solos expansivos e colapsíveis no Nordeste brasileiro a partir de Redes Neurais Artificiais geradas em Pernambuco
title Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
spellingShingle Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
Holanda, Maria Julia de Oliveira
Expansive Soils
Collapsible Soils
Artificial Neural Networks
Classification equation.
Suelos Expansivos
Suelos Colapsables
Redes Neuronales Artificiales
Ecuación de clasificación.
Solos Expansivos
Solos Colapsíveis
Redes Neurais Artificiais
Equação de classificação.
title_short Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
title_full Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
title_fullStr Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
title_full_unstemmed Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
title_sort Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco
author Holanda, Maria Julia de Oliveira
author_facet Holanda, Maria Julia de Oliveira
Ferreira, Silvio Romero de Melo
Amorim, Samuel Franca
Borges, Jesce John Silva
Silva, Larissa Ferreira da
author_role author
author2 Ferreira, Silvio Romero de Melo
Amorim, Samuel Franca
Borges, Jesce John Silva
Silva, Larissa Ferreira da
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Holanda, Maria Julia de Oliveira
Ferreira, Silvio Romero de Melo
Amorim, Samuel Franca
Borges, Jesce John Silva
Silva, Larissa Ferreira da
dc.subject.por.fl_str_mv Expansive Soils
Collapsible Soils
Artificial Neural Networks
Classification equation.
Suelos Expansivos
Suelos Colapsables
Redes Neuronales Artificiales
Ecuación de clasificación.
Solos Expansivos
Solos Colapsíveis
Redes Neurais Artificiais
Equação de classificação.
topic Expansive Soils
Collapsible Soils
Artificial Neural Networks
Classification equation.
Suelos Expansivos
Suelos Colapsables
Redes Neuronales Artificiales
Ecuación de clasificación.
Solos Expansivos
Solos Colapsíveis
Redes Neurais Artificiais
Equação de classificação.
description Collapsible and expansive soils are problematic in Civil Engineering, causing pathologies in buildings due to the variation in volume with the change in humidity. The identification of these soils in the design phase is important. The paper aims to develop an Artificial Neural Network architecture trained with soils from Pernambuco, to identify expansive and collapsible soils, and expand its application to soils from other states in Northeastern Brazil. Developed from 87 samples, divided between training (53 samples), selection (17 samples) and test (17 samples) groups, according to 4 input variables, percentage of sand, percentage of clay, plasticity and activity indices. The best network architecture consists of 4 neurons at the input and 1 at the output. For the blind validation of the model, the network was applied to 45 samples of collapsible and expansive soils from other Northeastern states. The performance analysis of the classification accuracy of the network with data from Pernambuco showed an accuracy rate of 76.5% and in the validation in the other Northeastern states, pattern recognition was even higher, reaching an accuracy of 91.1%, demonstrating capacity capturing trends in soil surface movement and aiding in problem solving.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/22541
10.33448/rsd-v10i15.22541
url https://rsdjournal.org/index.php/rsd/article/view/22541
identifier_str_mv 10.33448/rsd-v10i15.22541
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/22541/20134
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 15; e110101522541
Research, Society and Development; Vol. 10 Núm. 15; e110101522541
Research, Society and Development; v. 10 n. 15; e110101522541
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052695189651456