Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/6201 |
Resumo: | Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far. |
id |
UNIFEI_56d70ff0998455955273058f2dca3945 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/6201 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization periodModelo Incremental Dinámico (MDI) para pronosticar el período de estabilización pandémica SARS-CoV-2Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization periodCOVID-19Dynamic ModelPredictionDeaths.COVID-19Dynamic ModelPredictionDeaths.COVID-19Modelo dinámicoPredicciónFallecidos.Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far.Desde el comienzo del año 2020, el mundo ha estado experimentando una pandemia de COVID-19, que desafía al sector público a tomar decisiones rápidas y eficientes, ya que el resultado se cuenta en vidas. Por lo tanto, es necesario buscar modelos predictivos, que respalden la decisión y ayuden a comprender el comportamiento de las transmisiones. En este contexto, el trabajo tiene como objetivo presentar un modelo dinámico para el aumento diario en el número de muertes con el fin de determinar un rango de seguridad capaz de predecir un período de estabilización para estas muertes. Para esto, el modelo utiliza curvas exponenciales y potenciales como límites para analizar el comportamiento de la curva de incremento. El modelo demostró ser eficiente en comparación con los datos reales obtenidos hasta ahora.Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far.Research, Society and Development2020-07-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/620110.33448/rsd-v9i8.6201Research, Society and Development; Vol. 9 No. 8; e732986201Research, Society and Development; Vol. 9 Núm. 8; e732986201Research, Society and Development; v. 9 n. 8; e7329862012525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/6201/5901Copyright (c) 2020 Marcus Vinicius Dantas de Assunção, Carla Simone de Lima Teixeira Assuncao, Rute Anadila Amorim Oliveira, Mariah Caroline Martins de Sousahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAssunção, Marcus Vinicius Dantas deAssuncao, Carla Simone de Lima TeixeiraOliveira, Rute Anadila AmorimSousa, Mariah Caroline Martins de2020-08-20T18:00:17Zoai:ojs.pkp.sfu.ca:article/6201Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:29:25.893220Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period Modelo Incremental Dinámico (MDI) para pronosticar el período de estabilización pandémica SARS-CoV-2 Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
title |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
spellingShingle |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period Assunção, Marcus Vinicius Dantas de COVID-19 Dynamic Model Prediction Deaths. COVID-19 Dynamic Model Prediction Deaths. COVID-19 Modelo dinámico Predicción Fallecidos. |
title_short |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
title_full |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
title_fullStr |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
title_full_unstemmed |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
title_sort |
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period |
author |
Assunção, Marcus Vinicius Dantas de |
author_facet |
Assunção, Marcus Vinicius Dantas de Assuncao, Carla Simone de Lima Teixeira Oliveira, Rute Anadila Amorim Sousa, Mariah Caroline Martins de |
author_role |
author |
author2 |
Assuncao, Carla Simone de Lima Teixeira Oliveira, Rute Anadila Amorim Sousa, Mariah Caroline Martins de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Assunção, Marcus Vinicius Dantas de Assuncao, Carla Simone de Lima Teixeira Oliveira, Rute Anadila Amorim Sousa, Mariah Caroline Martins de |
dc.subject.por.fl_str_mv |
COVID-19 Dynamic Model Prediction Deaths. COVID-19 Dynamic Model Prediction Deaths. COVID-19 Modelo dinámico Predicción Fallecidos. |
topic |
COVID-19 Dynamic Model Prediction Deaths. COVID-19 Dynamic Model Prediction Deaths. COVID-19 Modelo dinámico Predicción Fallecidos. |
description |
Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/6201 10.33448/rsd-v9i8.6201 |
url |
https://rsdjournal.org/index.php/rsd/article/view/6201 |
identifier_str_mv |
10.33448/rsd-v9i8.6201 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/6201/5901 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 8; e732986201 Research, Society and Development; Vol. 9 Núm. 8; e732986201 Research, Society and Development; v. 9 n. 8; e732986201 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052654495465472 |