Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period

Detalhes bibliográficos
Autor(a) principal: Assunção, Marcus Vinicius Dantas de
Data de Publicação: 2020
Outros Autores: Assuncao, Carla Simone de Lima Teixeira, Oliveira, Rute Anadila Amorim, Sousa, Mariah Caroline Martins de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/6201
Resumo: Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far.
id UNIFEI_56d70ff0998455955273058f2dca3945
oai_identifier_str oai:ojs.pkp.sfu.ca:article/6201
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization periodModelo Incremental Dinámico (MDI) para pronosticar el período de estabilización pandémica SARS-CoV-2Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization periodCOVID-19Dynamic ModelPredictionDeaths.COVID-19Dynamic ModelPredictionDeaths.COVID-19Modelo dinámicoPredicciónFallecidos.Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far.Desde el comienzo del año 2020, el mundo ha estado experimentando una pandemia de COVID-19, que desafía al sector público a tomar decisiones rápidas y eficientes, ya que el resultado se cuenta en vidas. Por lo tanto, es necesario buscar modelos predictivos, que respalden la decisión y ayuden a comprender el comportamiento de las transmisiones. En este contexto, el trabajo tiene como objetivo presentar un modelo dinámico para el aumento diario en el número de muertes con el fin de determinar un rango de seguridad capaz de predecir un período de estabilización para estas muertes. Para esto, el modelo utiliza curvas exponenciales y potenciales como límites para analizar el comportamiento de la curva de incremento. El modelo demostró ser eficiente en comparación con los datos reales obtenidos hasta ahora.Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far.Research, Society and Development2020-07-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/620110.33448/rsd-v9i8.6201Research, Society and Development; Vol. 9 No. 8; e732986201Research, Society and Development; Vol. 9 Núm. 8; e732986201Research, Society and Development; v. 9 n. 8; e7329862012525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/6201/5901Copyright (c) 2020 Marcus Vinicius Dantas de Assunção, Carla Simone de Lima Teixeira Assuncao, Rute Anadila Amorim Oliveira, Mariah Caroline Martins de Sousahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAssunção, Marcus Vinicius Dantas deAssuncao, Carla Simone de Lima TeixeiraOliveira, Rute Anadila AmorimSousa, Mariah Caroline Martins de2020-08-20T18:00:17Zoai:ojs.pkp.sfu.ca:article/6201Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:29:25.893220Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
Modelo Incremental Dinámico (MDI) para pronosticar el período de estabilización pandémica SARS-CoV-2
Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
title Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
spellingShingle Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
Assunção, Marcus Vinicius Dantas de
COVID-19
Dynamic Model
Prediction
Deaths.
COVID-19
Dynamic Model
Prediction
Deaths.
COVID-19
Modelo dinámico
Predicción
Fallecidos.
title_short Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
title_full Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
title_fullStr Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
title_full_unstemmed Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
title_sort Dynamic Incremental Model (MDI) to forecast the SARS-CoV-2 pandemic stabilization period
author Assunção, Marcus Vinicius Dantas de
author_facet Assunção, Marcus Vinicius Dantas de
Assuncao, Carla Simone de Lima Teixeira
Oliveira, Rute Anadila Amorim
Sousa, Mariah Caroline Martins de
author_role author
author2 Assuncao, Carla Simone de Lima Teixeira
Oliveira, Rute Anadila Amorim
Sousa, Mariah Caroline Martins de
author2_role author
author
author
dc.contributor.author.fl_str_mv Assunção, Marcus Vinicius Dantas de
Assuncao, Carla Simone de Lima Teixeira
Oliveira, Rute Anadila Amorim
Sousa, Mariah Caroline Martins de
dc.subject.por.fl_str_mv COVID-19
Dynamic Model
Prediction
Deaths.
COVID-19
Dynamic Model
Prediction
Deaths.
COVID-19
Modelo dinámico
Predicción
Fallecidos.
topic COVID-19
Dynamic Model
Prediction
Deaths.
COVID-19
Dynamic Model
Prediction
Deaths.
COVID-19
Modelo dinámico
Predicción
Fallecidos.
description Since the beginning of the year 2020, the world has been experiencing a COVID-19 pandemic, which challenges the public sector to make quick and efficient decisions, as the result is counted in lives. Thus, it is necessary to search for predictive models that support the decision and assist in the understanding of the behavior of the transmissions. In this context, the work aims to present a dynamic model for the daily increase in the number of deaths in order to determine a safety range capable of predicting a stabilization period for these deaths. For this, the model uses exponential and potential curves as limits for analyzing the behavior of the increment curve. The model proved to be efficient when compared to the actual data obtained so far.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/6201
10.33448/rsd-v9i8.6201
url https://rsdjournal.org/index.php/rsd/article/view/6201
identifier_str_mv 10.33448/rsd-v9i8.6201
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/6201/5901
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 8; e732986201
Research, Society and Development; Vol. 9 Núm. 8; e732986201
Research, Society and Development; v. 9 n. 8; e732986201
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052654495465472