High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study

Detalhes bibliográficos
Autor(a) principal: Ramos, Rosália Elen Santos
Data de Publicação: 2021
Outros Autores: Bezerra, Letícia Pereira, Machado, João Paulo Vieira, Lima, Pedro Dantas, Lima, Maria Wilma da Silva, Alencar, Vitória Jordana Bezerra, Bispo, Martha Rejane Souza, Lima Júnior, Aécio Prado, Silva, Ádrian Cabral, Gomes, Sheilla da Conceição, Silva, Laryssa Oliveira, Nascimento, Joyce da Silva, Paz, Wandklebson Silva da, Reis, Erica Santos dos, Costa, Loane Márzia Lopes, Santos, Israel Gomes de Amorim
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/21875
Resumo: Given the importance of the context and the rapid dissemination of COVID-19, the aim of this study was to analyze the spatial and spatiotemporal distribution of COVID-19 in the Northeast region of Brazil. We used spatial and spatiotemporal approaches, taking into account all confirmed cases in the Northeast, between March 2020 and July 2021. Using spatial statistics, we constructed maps representing the crude prevalence rates and risk clusters for the disease in the Northeast. 3,956,255 cases of COVID-19 were reported in the region, with the states with the highest number of cases being Bahia, Ceará and Pernambuco. However, the highest rates occurred in municipalities in the states of Alagoas, Bahia, Ceará, Maranhão and Rio Grande do Norte and high-risk clusters were observed in the same states. Thus, this research demonstrates a perspective of the behavior of COVID-19 occurrence in the Northeast region of Brazil, highlighting the areas that must be monitored by the health systems to create better strategies for controlling and coping with the disease.
id UNIFEI_5cff2b65932a5c9bdfdf8938df328545
oai_identifier_str oai:ojs.pkp.sfu.ca:article/21875
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological studyAgrupaciones espacio-temporales de alto riesgo de COVID-19 en el noreste de Brasil: un estudio ecológico basado en la poblaciónAgrupamentos espaço-temporais de alto risco da COVID-19 na região Nordeste do Brasil: um estudo ecológico de base populacionalSpatial analysisCoronavirusesEpidemiologyPublic health.Análisis espacialCoronavirusEpidemiologíaSalud pública.Análise espacialCoronavírusEpidemiologiaSaúde pública. Given the importance of the context and the rapid dissemination of COVID-19, the aim of this study was to analyze the spatial and spatiotemporal distribution of COVID-19 in the Northeast region of Brazil. We used spatial and spatiotemporal approaches, taking into account all confirmed cases in the Northeast, between March 2020 and July 2021. Using spatial statistics, we constructed maps representing the crude prevalence rates and risk clusters for the disease in the Northeast. 3,956,255 cases of COVID-19 were reported in the region, with the states with the highest number of cases being Bahia, Ceará and Pernambuco. However, the highest rates occurred in municipalities in the states of Alagoas, Bahia, Ceará, Maranhão and Rio Grande do Norte and high-risk clusters were observed in the same states. Thus, this research demonstrates a perspective of the behavior of COVID-19 occurrence in the Northeast region of Brazil, highlighting the areas that must be monitored by the health systems to create better strategies for controlling and coping with the disease.Dada la importancia del contexto y la rápida difusión de COVID-19, el objetivo de este estudio fue analizar la distribución espacial y espacio-temporal de COVID-19 en la región Nordeste de Brasil. Utilizamos enfoques espaciales y espacio-temporales, teniendo en cuenta todos los casos confirmados en el Noreste, entre marzo de 2020 y julio de 2021. Utilizando estadísticas espaciales, construimos mapas que representan las tasas brutas de prevalencia y los grupos de riesgo de la enfermedad en el noreste. Se notificaron 3.956.255 casos de COVID-19 en la región, siendo los estados con mayor número de casos Bahía, Ceará y Pernambuco. Sin embargo, las tasas más altas ocurrieron en los municipios de los estados de Alagoas, Bahía, Ceará, Maranhão y Rio Grande do Norte y se observaron conglomerados de alto riesgo en los mismos estados. Así, esta investigación muestra una perspectiva del comportamiento de la ocurrencia de COVID-19 en la región Noreste del Brasil, destacando las áreas que deben ser monitoreadas por los sistemas de salud para crear mejores estrategias de control y afrontamiento de la enfermedad.Dada a importância do contexto e da rápida disseminação da COVID-19, o objetivo deste estudo foi analisar a distribuição espacial e espaço-temporal da COVID-19 na região Nordeste do Brasil. Usamos abordagens espaciais e espaço-temporais, levando em consideração todos os casos confirmados no Nordeste, entre março de 2020 e julho de 2021. Através da estatística espacial construímos mapas representativos das taxas brutas de prevalência e clusters de risco para a doença no Nordeste. Foram notificados 3.956.255 casos de COVID-19 na região, sendo os estados com maior número de casos Bahia, Ceará e Pernambuco. No entanto, as maiores taxas ocorreram nos municípios dos estados de Alagoas, Bahia, Ceará, Maranhão e Rio Grande do Norte e os clusters de alto risco foram observados nos mesmos estados. Com isso, essa pesquisa demonstra uma perspectiva do comportamento de ocorrência COVID-19 na região Nordeste do Brasil, evidenciando as áreas que devem ser monitoradas pelos sistemas de saúde para criar melhores estratégias de controle e enfrentamento da doença.  Research, Society and Development2021-10-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2187510.33448/rsd-v10i14.21875Research, Society and Development; Vol. 10 No. 14; e205101421875Research, Society and Development; Vol. 10 Núm. 14; e205101421875Research, Society and Development; v. 10 n. 14; e2051014218752525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/21875/19508Copyright (c) 2021 Rosália Elen Santos Ramos; Letícia Pereira Bezerra; João Paulo Vieira Machado; Pedro Dantas Lima; Maria Wilma da Silva Lima; Vitória Jordana Bezerra Alencar; Martha Rejane Souza Bispo; Aécio Prado Lima Júnior; Ádrian Cabral Silva; Sheilla da Conceição Gomes; Laryssa Oliveira Silva; Joyce da Silva Nascimento; Wandklebson Silva da Paz; Erica Santos dos Reis; Loane Márzia Lopes Costa; Israel Gomes de Amorim Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRamos, Rosália Elen Santos Bezerra, Letícia PereiraMachado, João Paulo Vieira Lima, Pedro Dantas Lima, Maria Wilma da Silva Alencar, Vitória Jordana Bezerra Bispo, Martha Rejane Souza Lima Júnior, Aécio Prado Silva, Ádrian Cabral Gomes, Sheilla da Conceição Silva, Laryssa Oliveira Nascimento, Joyce da Silva Paz, Wandklebson Silva da Reis, Erica Santos dos Costa, Loane Márzia Lopes Santos, Israel Gomes de Amorim 2021-12-04T11:48:39Zoai:ojs.pkp.sfu.ca:article/21875Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:41:11.962529Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
Agrupaciones espacio-temporales de alto riesgo de COVID-19 en el noreste de Brasil: un estudio ecológico basado en la población
Agrupamentos espaço-temporais de alto risco da COVID-19 na região Nordeste do Brasil: um estudo ecológico de base populacional
title High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
spellingShingle High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
Ramos, Rosália Elen Santos
Spatial analysis
Coronaviruses
Epidemiology
Public health.
Análisis espacial
Coronavirus
Epidemiología
Salud pública.
Análise espacial
Coronavírus
Epidemiologia
Saúde pública.
title_short High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
title_full High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
title_fullStr High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
title_full_unstemmed High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
title_sort High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
author Ramos, Rosália Elen Santos
author_facet Ramos, Rosália Elen Santos
Bezerra, Letícia Pereira
Machado, João Paulo Vieira
Lima, Pedro Dantas
Lima, Maria Wilma da Silva
Alencar, Vitória Jordana Bezerra
Bispo, Martha Rejane Souza
Lima Júnior, Aécio Prado
Silva, Ádrian Cabral
Gomes, Sheilla da Conceição
Silva, Laryssa Oliveira
Nascimento, Joyce da Silva
Paz, Wandklebson Silva da
Reis, Erica Santos dos
Costa, Loane Márzia Lopes
Santos, Israel Gomes de Amorim
author_role author
author2 Bezerra, Letícia Pereira
Machado, João Paulo Vieira
Lima, Pedro Dantas
Lima, Maria Wilma da Silva
Alencar, Vitória Jordana Bezerra
Bispo, Martha Rejane Souza
Lima Júnior, Aécio Prado
Silva, Ádrian Cabral
Gomes, Sheilla da Conceição
Silva, Laryssa Oliveira
Nascimento, Joyce da Silva
Paz, Wandklebson Silva da
Reis, Erica Santos dos
Costa, Loane Márzia Lopes
Santos, Israel Gomes de Amorim
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ramos, Rosália Elen Santos
Bezerra, Letícia Pereira
Machado, João Paulo Vieira
Lima, Pedro Dantas
Lima, Maria Wilma da Silva
Alencar, Vitória Jordana Bezerra
Bispo, Martha Rejane Souza
Lima Júnior, Aécio Prado
Silva, Ádrian Cabral
Gomes, Sheilla da Conceição
Silva, Laryssa Oliveira
Nascimento, Joyce da Silva
Paz, Wandklebson Silva da
Reis, Erica Santos dos
Costa, Loane Márzia Lopes
Santos, Israel Gomes de Amorim
dc.subject.por.fl_str_mv Spatial analysis
Coronaviruses
Epidemiology
Public health.
Análisis espacial
Coronavirus
Epidemiología
Salud pública.
Análise espacial
Coronavírus
Epidemiologia
Saúde pública.
topic Spatial analysis
Coronaviruses
Epidemiology
Public health.
Análisis espacial
Coronavirus
Epidemiología
Salud pública.
Análise espacial
Coronavírus
Epidemiologia
Saúde pública.
description Given the importance of the context and the rapid dissemination of COVID-19, the aim of this study was to analyze the spatial and spatiotemporal distribution of COVID-19 in the Northeast region of Brazil. We used spatial and spatiotemporal approaches, taking into account all confirmed cases in the Northeast, between March 2020 and July 2021. Using spatial statistics, we constructed maps representing the crude prevalence rates and risk clusters for the disease in the Northeast. 3,956,255 cases of COVID-19 were reported in the region, with the states with the highest number of cases being Bahia, Ceará and Pernambuco. However, the highest rates occurred in municipalities in the states of Alagoas, Bahia, Ceará, Maranhão and Rio Grande do Norte and high-risk clusters were observed in the same states. Thus, this research demonstrates a perspective of the behavior of COVID-19 occurrence in the Northeast region of Brazil, highlighting the areas that must be monitored by the health systems to create better strategies for controlling and coping with the disease.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-31
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/21875
10.33448/rsd-v10i14.21875
url https://rsdjournal.org/index.php/rsd/article/view/21875
identifier_str_mv 10.33448/rsd-v10i14.21875
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/21875/19508
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 14; e205101421875
Research, Society and Development; Vol. 10 Núm. 14; e205101421875
Research, Society and Development; v. 10 n. 14; e205101421875
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052789873967104