High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/21875 |
Resumo: | Given the importance of the context and the rapid dissemination of COVID-19, the aim of this study was to analyze the spatial and spatiotemporal distribution of COVID-19 in the Northeast region of Brazil. We used spatial and spatiotemporal approaches, taking into account all confirmed cases in the Northeast, between March 2020 and July 2021. Using spatial statistics, we constructed maps representing the crude prevalence rates and risk clusters for the disease in the Northeast. 3,956,255 cases of COVID-19 were reported in the region, with the states with the highest number of cases being Bahia, Ceará and Pernambuco. However, the highest rates occurred in municipalities in the states of Alagoas, Bahia, Ceará, Maranhão and Rio Grande do Norte and high-risk clusters were observed in the same states. Thus, this research demonstrates a perspective of the behavior of COVID-19 occurrence in the Northeast region of Brazil, highlighting the areas that must be monitored by the health systems to create better strategies for controlling and coping with the disease. |
id |
UNIFEI_5cff2b65932a5c9bdfdf8938df328545 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/21875 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological studyAgrupaciones espacio-temporales de alto riesgo de COVID-19 en el noreste de Brasil: un estudio ecológico basado en la poblaciónAgrupamentos espaço-temporais de alto risco da COVID-19 na região Nordeste do Brasil: um estudo ecológico de base populacionalSpatial analysisCoronavirusesEpidemiologyPublic health.Análisis espacialCoronavirusEpidemiologíaSalud pública.Análise espacialCoronavírusEpidemiologiaSaúde pública. Given the importance of the context and the rapid dissemination of COVID-19, the aim of this study was to analyze the spatial and spatiotemporal distribution of COVID-19 in the Northeast region of Brazil. We used spatial and spatiotemporal approaches, taking into account all confirmed cases in the Northeast, between March 2020 and July 2021. Using spatial statistics, we constructed maps representing the crude prevalence rates and risk clusters for the disease in the Northeast. 3,956,255 cases of COVID-19 were reported in the region, with the states with the highest number of cases being Bahia, Ceará and Pernambuco. However, the highest rates occurred in municipalities in the states of Alagoas, Bahia, Ceará, Maranhão and Rio Grande do Norte and high-risk clusters were observed in the same states. Thus, this research demonstrates a perspective of the behavior of COVID-19 occurrence in the Northeast region of Brazil, highlighting the areas that must be monitored by the health systems to create better strategies for controlling and coping with the disease.Dada la importancia del contexto y la rápida difusión de COVID-19, el objetivo de este estudio fue analizar la distribución espacial y espacio-temporal de COVID-19 en la región Nordeste de Brasil. Utilizamos enfoques espaciales y espacio-temporales, teniendo en cuenta todos los casos confirmados en el Noreste, entre marzo de 2020 y julio de 2021. Utilizando estadísticas espaciales, construimos mapas que representan las tasas brutas de prevalencia y los grupos de riesgo de la enfermedad en el noreste. Se notificaron 3.956.255 casos de COVID-19 en la región, siendo los estados con mayor número de casos Bahía, Ceará y Pernambuco. Sin embargo, las tasas más altas ocurrieron en los municipios de los estados de Alagoas, Bahía, Ceará, Maranhão y Rio Grande do Norte y se observaron conglomerados de alto riesgo en los mismos estados. Así, esta investigación muestra una perspectiva del comportamiento de la ocurrencia de COVID-19 en la región Noreste del Brasil, destacando las áreas que deben ser monitoreadas por los sistemas de salud para crear mejores estrategias de control y afrontamiento de la enfermedad.Dada a importância do contexto e da rápida disseminação da COVID-19, o objetivo deste estudo foi analisar a distribuição espacial e espaço-temporal da COVID-19 na região Nordeste do Brasil. Usamos abordagens espaciais e espaço-temporais, levando em consideração todos os casos confirmados no Nordeste, entre março de 2020 e julho de 2021. Através da estatística espacial construímos mapas representativos das taxas brutas de prevalência e clusters de risco para a doença no Nordeste. Foram notificados 3.956.255 casos de COVID-19 na região, sendo os estados com maior número de casos Bahia, Ceará e Pernambuco. No entanto, as maiores taxas ocorreram nos municípios dos estados de Alagoas, Bahia, Ceará, Maranhão e Rio Grande do Norte e os clusters de alto risco foram observados nos mesmos estados. Com isso, essa pesquisa demonstra uma perspectiva do comportamento de ocorrência COVID-19 na região Nordeste do Brasil, evidenciando as áreas que devem ser monitoradas pelos sistemas de saúde para criar melhores estratégias de controle e enfrentamento da doença. Research, Society and Development2021-10-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2187510.33448/rsd-v10i14.21875Research, Society and Development; Vol. 10 No. 14; e205101421875Research, Society and Development; Vol. 10 Núm. 14; e205101421875Research, Society and Development; v. 10 n. 14; e2051014218752525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/21875/19508Copyright (c) 2021 Rosália Elen Santos Ramos; Letícia Pereira Bezerra; João Paulo Vieira Machado; Pedro Dantas Lima; Maria Wilma da Silva Lima; Vitória Jordana Bezerra Alencar; Martha Rejane Souza Bispo; Aécio Prado Lima Júnior; Ádrian Cabral Silva; Sheilla da Conceição Gomes; Laryssa Oliveira Silva; Joyce da Silva Nascimento; Wandklebson Silva da Paz; Erica Santos dos Reis; Loane Márzia Lopes Costa; Israel Gomes de Amorim Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRamos, Rosália Elen Santos Bezerra, Letícia PereiraMachado, João Paulo Vieira Lima, Pedro Dantas Lima, Maria Wilma da Silva Alencar, Vitória Jordana Bezerra Bispo, Martha Rejane Souza Lima Júnior, Aécio Prado Silva, Ádrian Cabral Gomes, Sheilla da Conceição Silva, Laryssa Oliveira Nascimento, Joyce da Silva Paz, Wandklebson Silva da Reis, Erica Santos dos Costa, Loane Márzia Lopes Santos, Israel Gomes de Amorim 2021-12-04T11:48:39Zoai:ojs.pkp.sfu.ca:article/21875Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:41:11.962529Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study Agrupaciones espacio-temporales de alto riesgo de COVID-19 en el noreste de Brasil: un estudio ecológico basado en la población Agrupamentos espaço-temporais de alto risco da COVID-19 na região Nordeste do Brasil: um estudo ecológico de base populacional |
title |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study |
spellingShingle |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study Ramos, Rosália Elen Santos Spatial analysis Coronaviruses Epidemiology Public health. Análisis espacial Coronavirus Epidemiología Salud pública. Análise espacial Coronavírus Epidemiologia Saúde pública. |
title_short |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study |
title_full |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study |
title_fullStr |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study |
title_full_unstemmed |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study |
title_sort |
High-risk spatiotemporal clusters of COVID-19 in Northeastern Brazil: a population-based ecological study |
author |
Ramos, Rosália Elen Santos |
author_facet |
Ramos, Rosália Elen Santos Bezerra, Letícia Pereira Machado, João Paulo Vieira Lima, Pedro Dantas Lima, Maria Wilma da Silva Alencar, Vitória Jordana Bezerra Bispo, Martha Rejane Souza Lima Júnior, Aécio Prado Silva, Ádrian Cabral Gomes, Sheilla da Conceição Silva, Laryssa Oliveira Nascimento, Joyce da Silva Paz, Wandklebson Silva da Reis, Erica Santos dos Costa, Loane Márzia Lopes Santos, Israel Gomes de Amorim |
author_role |
author |
author2 |
Bezerra, Letícia Pereira Machado, João Paulo Vieira Lima, Pedro Dantas Lima, Maria Wilma da Silva Alencar, Vitória Jordana Bezerra Bispo, Martha Rejane Souza Lima Júnior, Aécio Prado Silva, Ádrian Cabral Gomes, Sheilla da Conceição Silva, Laryssa Oliveira Nascimento, Joyce da Silva Paz, Wandklebson Silva da Reis, Erica Santos dos Costa, Loane Márzia Lopes Santos, Israel Gomes de Amorim |
author2_role |
author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Ramos, Rosália Elen Santos Bezerra, Letícia Pereira Machado, João Paulo Vieira Lima, Pedro Dantas Lima, Maria Wilma da Silva Alencar, Vitória Jordana Bezerra Bispo, Martha Rejane Souza Lima Júnior, Aécio Prado Silva, Ádrian Cabral Gomes, Sheilla da Conceição Silva, Laryssa Oliveira Nascimento, Joyce da Silva Paz, Wandklebson Silva da Reis, Erica Santos dos Costa, Loane Márzia Lopes Santos, Israel Gomes de Amorim |
dc.subject.por.fl_str_mv |
Spatial analysis Coronaviruses Epidemiology Public health. Análisis espacial Coronavirus Epidemiología Salud pública. Análise espacial Coronavírus Epidemiologia Saúde pública. |
topic |
Spatial analysis Coronaviruses Epidemiology Public health. Análisis espacial Coronavirus Epidemiología Salud pública. Análise espacial Coronavírus Epidemiologia Saúde pública. |
description |
Given the importance of the context and the rapid dissemination of COVID-19, the aim of this study was to analyze the spatial and spatiotemporal distribution of COVID-19 in the Northeast region of Brazil. We used spatial and spatiotemporal approaches, taking into account all confirmed cases in the Northeast, between March 2020 and July 2021. Using spatial statistics, we constructed maps representing the crude prevalence rates and risk clusters for the disease in the Northeast. 3,956,255 cases of COVID-19 were reported in the region, with the states with the highest number of cases being Bahia, Ceará and Pernambuco. However, the highest rates occurred in municipalities in the states of Alagoas, Bahia, Ceará, Maranhão and Rio Grande do Norte and high-risk clusters were observed in the same states. Thus, this research demonstrates a perspective of the behavior of COVID-19 occurrence in the Northeast region of Brazil, highlighting the areas that must be monitored by the health systems to create better strategies for controlling and coping with the disease. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/21875 10.33448/rsd-v10i14.21875 |
url |
https://rsdjournal.org/index.php/rsd/article/view/21875 |
identifier_str_mv |
10.33448/rsd-v10i14.21875 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/21875/19508 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 14; e205101421875 Research, Society and Development; Vol. 10 Núm. 14; e205101421875 Research, Society and Development; v. 10 n. 14; e205101421875 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052789873967104 |