Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/20804 |
Resumo: | Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation. |
id |
UNIFEI_7c727e234e3f42ea8f00f4fda561a5f9 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/20804 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learningPronóstico de casos de Dengue, Chikungunya y Zika en Recife, Brasil: un enfoque espacio-temporal basado en las condiciones climáticas, notificaciones de salud y aprendizaje de máquinaPredição de casos de Dengue, Chikungunya e Zika em Recife, Brasil: uma abordagem espaço-temporal com base em condições climáticas, notificações de saúde e aprendizado de máquinaDengue forecastingChikungunya forecastingZika forecastingArboviruses forecastingMachine learningArboviruses prediction.Previsão da denguePrevisão de ChikungunyaPrevisão do ZikaPrevisão de arbovírusAprendizado de máquinaPredição de arbovírus.Pronóstico del denguePronóstico de ChikungunyaPronóstico del ZikaPredicción de arbovirusAprendizaje de máquinaPredicción de arbovírus.Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation.El dengue se ha convertido en un desafío para muchos países. Los arbovirus transmitidos por Aedes aegypti se han propagado rápidamente en las últimas décadas. La aparición de la fiebre chikungunya y Zika en América del Sur presenta nuevos desafíos para el monitoreo y control de vectores. Esta situación se agravó a partir de 2015 y 2016, con la rápida propagación del chikungunya, que provoca fiebre y debilidad muscular, y el virus Zika, relacionado con casos de microcefalia en recién nacidos y la aparición del síndrome de GuillainBarret, una enfermedad autoinmune que afecta al sistema nervioso. El objetivo de este trabajo fue construir una herramienta para predecir la distribución de arbovirus transmitidos por el mosquito Aedesaegypti mediante la implementación de predictores de transmisión de dengue, zika y chikungunya basados en aprendizaje de máquina, con foco en redes neuronales de perceptrones multicamadas, máquinas de vector de soporte y modelos de regresión lineal. Como estudio de caso, investigamos modelos de predicción para predecir la distribución espaciotemporal de casos a partir de datos de notificación de salud primaria y variables climáticas (velocidad del viento, temperatura y lluvia) de Recife, Brasil, 2013 a 2016, incluido el brote de 2015. El uso de análises espaciotemporal por medio de perceptrones multicamadas y los resultados de las máquinas de vectores de soporte demostraron ser muy eficaces para predecir la distribución de los casos de arbovirus. Los modelos indican que las regiones sur y oeste de Recife fueron muy susceptibles a brotes en el período investigado. El enfoque propuesto puede ser útil para apoyar a los administradores de salud y epidemiólogos en la prevención de brotes de arbovirus transmitidos por Aedes aegypti y en la promoción de políticas públicas para promover la salud y el saneamiento.A dengue se tornou um desafio para muitos países. Os arbovírus transmitidos por Aedes aegypti se espalharam rapidamente nas últimas décadas. A emergência de febre chikungunya e zika na América do Sul apresenta novos desafios para o monitoramento e controle de vetores. Essa situação piorou a partir de 2015 e 2016, com a rápida disseminação da chikungunya, causando febre e fraqueza muscular, e do Zika vírus, relacionado a casos de microcefalia em recémnascidos e a ocorrência da síndrome de Guillain-Barret, doença autoimune que afeta o sistema nervoso. O objetivo deste trabalho foi construir uma ferramenta para previsão da distribuição de arbovírus transmitidos pelo mosquito Aedes aegypti por meio da implementação de preditores de transmissão de dengue, zika e chikungunya baseados em aprendizado de máquina, com foco em redes neurais perceptrons multicamadas, máquinas de vetores de suporte e modelos de regressão linear. Como um estudo de caso, investigamos modelos de previsão para prever a distribuição espaçotemporal de casos a partir de dados de notificação de saúde primária e variáveis climáticas (velocidade do vento, temperatura e pluviometria) de Recife, Brasil, de 2013 a 2016, incluindo o surto de 2015. O uso de análises espaçotemporais sobre perceptrons multicamadas e resultados de máquinas de vetores de suporte mostraramse bastante eficazes na previsão da distribuição de casos de arbovírus. Os modelos indicam que as regiões sul e oeste do Recife foram muito suscetíveis a surtos no período investigado. A abordagem proposta pode ser útil para apoiar gestores de saúde e epidemiologistas na prevenção de surtos de arbovírus transmitidos pelo Aedes aegypti e na promoção de políticas públicas de promoção da saúde e saneamento.Research, Society and Development2021-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2080410.33448/rsd-v10i12.20804Research, Society and Development; Vol. 10 No. 12; e452101220804Research, Society and Development; Vol. 10 Núm. 12; e452101220804Research, Society and Development; v. 10 n. 12; e4521012208042525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/20804/18426Copyright (c) 2021 Cecilia Cordeiro da Silva; Clarisse Lins de Lima; Ana Clara Gomes da Silva; Giselle Machado Magalhães Moreno; Anwar Musah; Aisha Aldosery; Livia Dutra; Tercio Ambrizzi; Iuri Valério Graciano Borges; Merve Tunali; Selma Basibuyuk; Orhan Yenigün; Kate Jones; Luiza Campos; Tiago Lima Massoni; Abel Guilhermino da Silva Filho; Patty Kostkova; Wellington Pinheiro dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Cecilia Cordeiro daLima, Clarisse Lins deSilva, Ana Clara Gomes daMoreno, Giselle Machado MagalhãesMusah, AnwarAldosery, AishaDutra, LiviaAmbrizzi, TercioBorges, Iuri Valério GracianoTunali, MerveBasibuyuk, SelmaYenigün, OrhanJones, KateCampos, LuizaMassoni, Tiago LimaSilva Filho, Abel Guilhermino daKostkova, PattySantos, Wellington Pinheiro dos2021-11-14T20:26:51Zoai:ojs.pkp.sfu.ca:article/20804Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:40:20.801493Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning Pronóstico de casos de Dengue, Chikungunya y Zika en Recife, Brasil: un enfoque espacio-temporal basado en las condiciones climáticas, notificaciones de salud y aprendizaje de máquina Predição de casos de Dengue, Chikungunya e Zika em Recife, Brasil: uma abordagem espaço-temporal com base em condições climáticas, notificações de saúde e aprendizado de máquina |
title |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning |
spellingShingle |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning Silva, Cecilia Cordeiro da Dengue forecasting Chikungunya forecasting Zika forecasting Arboviruses forecasting Machine learning Arboviruses prediction. Previsão da dengue Previsão de Chikungunya Previsão do Zika Previsão de arbovírus Aprendizado de máquina Predição de arbovírus. Pronóstico del dengue Pronóstico de Chikungunya Pronóstico del Zika Predicción de arbovirus Aprendizaje de máquina Predicción de arbovírus. |
title_short |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning |
title_full |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning |
title_fullStr |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning |
title_full_unstemmed |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning |
title_sort |
Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning |
author |
Silva, Cecilia Cordeiro da |
author_facet |
Silva, Cecilia Cordeiro da Lima, Clarisse Lins de Silva, Ana Clara Gomes da Moreno, Giselle Machado Magalhães Musah, Anwar Aldosery, Aisha Dutra, Livia Ambrizzi, Tercio Borges, Iuri Valério Graciano Tunali, Merve Basibuyuk, Selma Yenigün, Orhan Jones, Kate Campos, Luiza Massoni, Tiago Lima Silva Filho, Abel Guilhermino da Kostkova, Patty Santos, Wellington Pinheiro dos |
author_role |
author |
author2 |
Lima, Clarisse Lins de Silva, Ana Clara Gomes da Moreno, Giselle Machado Magalhães Musah, Anwar Aldosery, Aisha Dutra, Livia Ambrizzi, Tercio Borges, Iuri Valério Graciano Tunali, Merve Basibuyuk, Selma Yenigün, Orhan Jones, Kate Campos, Luiza Massoni, Tiago Lima Silva Filho, Abel Guilhermino da Kostkova, Patty Santos, Wellington Pinheiro dos |
author2_role |
author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Silva, Cecilia Cordeiro da Lima, Clarisse Lins de Silva, Ana Clara Gomes da Moreno, Giselle Machado Magalhães Musah, Anwar Aldosery, Aisha Dutra, Livia Ambrizzi, Tercio Borges, Iuri Valério Graciano Tunali, Merve Basibuyuk, Selma Yenigün, Orhan Jones, Kate Campos, Luiza Massoni, Tiago Lima Silva Filho, Abel Guilhermino da Kostkova, Patty Santos, Wellington Pinheiro dos |
dc.subject.por.fl_str_mv |
Dengue forecasting Chikungunya forecasting Zika forecasting Arboviruses forecasting Machine learning Arboviruses prediction. Previsão da dengue Previsão de Chikungunya Previsão do Zika Previsão de arbovírus Aprendizado de máquina Predição de arbovírus. Pronóstico del dengue Pronóstico de Chikungunya Pronóstico del Zika Predicción de arbovirus Aprendizaje de máquina Predicción de arbovírus. |
topic |
Dengue forecasting Chikungunya forecasting Zika forecasting Arboviruses forecasting Machine learning Arboviruses prediction. Previsão da dengue Previsão de Chikungunya Previsão do Zika Previsão de arbovírus Aprendizado de máquina Predição de arbovírus. Pronóstico del dengue Pronóstico de Chikungunya Pronóstico del Zika Predicción de arbovirus Aprendizaje de máquina Predicción de arbovírus. |
description |
Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/20804 10.33448/rsd-v10i12.20804 |
url |
https://rsdjournal.org/index.php/rsd/article/view/20804 |
identifier_str_mv |
10.33448/rsd-v10i12.20804 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/20804/18426 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 12; e452101220804 Research, Society and Development; Vol. 10 Núm. 12; e452101220804 Research, Society and Development; v. 10 n. 12; e452101220804 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052756122402816 |