Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning

Detalhes bibliográficos
Autor(a) principal: Silva, Cecilia Cordeiro da
Data de Publicação: 2021
Outros Autores: Lima, Clarisse Lins de, Silva, Ana Clara Gomes da, Moreno, Giselle Machado Magalhães, Musah, Anwar, Aldosery, Aisha, Dutra, Livia, Ambrizzi, Tercio, Borges, Iuri Valério Graciano, Tunali, Merve, Basibuyuk, Selma, Yenigün, Orhan, Jones, Kate, Campos, Luiza, Massoni, Tiago Lima, Silva Filho, Abel Guilhermino da, Kostkova, Patty, Santos, Wellington Pinheiro dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/20804
Resumo: Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation.
id UNIFEI_7c727e234e3f42ea8f00f4fda561a5f9
oai_identifier_str oai:ojs.pkp.sfu.ca:article/20804
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learningPronóstico de casos de Dengue, Chikungunya y Zika en Recife, Brasil: un enfoque espacio-temporal basado en las condiciones climáticas, notificaciones de salud y aprendizaje de máquinaPredição de casos de Dengue, Chikungunya e Zika em Recife, Brasil: uma abordagem espaço-temporal com base em condições climáticas, notificações de saúde e aprendizado de máquinaDengue forecastingChikungunya forecastingZika forecastingArboviruses forecastingMachine learningArboviruses prediction.Previsão da denguePrevisão de ChikungunyaPrevisão do ZikaPrevisão de arbovírusAprendizado de máquinaPredição de arbovírus.Pronóstico del denguePronóstico de ChikungunyaPronóstico del ZikaPredicción de arbovirusAprendizaje de máquinaPredicción de arbovírus.Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation.El dengue se ha convertido en un desafío para muchos países. Los arbovirus transmitidos por Aedes aegypti se han propagado rápidamente en las últimas décadas. La aparición de la fiebre chikungunya y Zika en América del Sur presenta nuevos desafíos para el monitoreo y control de vectores. Esta situación se agravó a partir de 2015 y 2016, con la rápida propagación del chikungunya, que provoca fiebre y debilidad muscular, y el virus Zika, relacionado con casos de microcefalia en recién nacidos y la aparición del síndrome de Guillain­Barret, una enfermedad autoinmune que afecta al sistema nervioso. El objetivo de este trabajo fue construir una herramienta para predecir la distribución de arbovirus transmitidos por el mosquito Aedesaegypti mediante la implementación de predictores de transmisión de dengue, zika y chikungunya basados en aprendizaje de máquina, con foco en redes neuronales de perceptrones multicamadas, máquinas de vector de soporte y modelos de regresión lineal. Como estudio de caso, investigamos modelos de predicción para predecir la distribución espacio­temporal de casos a partir de datos de notificación de salud primaria y variables climáticas (velocidad del viento, temperatura y lluvia) de Recife, Brasil, 2013 a 2016, incluido el brote de 2015. El uso de análises espacio­temporal por medio de perceptrones multicamadas y los resultados de las máquinas de vectores de soporte demostraron ser muy eficaces para predecir la distribución de los casos de arbovirus. Los modelos indican que las regiones sur y oeste de Recife fueron muy susceptibles a brotes en el período investigado. El enfoque propuesto puede ser útil para apoyar a los administradores de salud y epidemiólogos en la prevención de brotes de arbovirus transmitidos por Aedes aegypti y en la promoción de políticas públicas para promover la salud y el saneamiento.A dengue se tornou um desafio para muitos países. Os arbovírus transmitidos por Aedes aegypti se espalharam rapidamente nas últimas décadas. A emergência de febre chikungunya e zika na América do Sul apresenta novos desafios para o monitoramento e controle de vetores. Essa situação piorou a partir de 2015 e 2016, com a rápida disseminação da chikungunya, causando febre e fraqueza muscular, e do Zika vírus, relacionado a casos de microcefalia em recém­nascidos e a ocorrência da síndrome de Guillain-Barret, doença autoimune que afeta o sistema nervoso. O objetivo deste trabalho foi construir uma ferramenta para previsão da distribuição de arbovírus transmitidos pelo mosquito Aedes aegypti por meio da implementação de preditores de transmissão de dengue, zika e chikungunya baseados em aprendizado de máquina, com foco em redes neurais perceptrons multicamadas, máquinas de vetores de suporte e modelos de regressão linear. Como um estudo de caso, investigamos modelos de previsão para prever a distribuição espaço­temporal de casos a partir de dados de notificação de saúde primária e variáveis climáticas (velocidade do vento, temperatura e pluviometria) de Recife, Brasil, de 2013 a 2016, incluindo o surto de 2015. O uso de análises espaçotemporais sobre perceptrons multicamadas e resultados de máquinas de vetores de suporte mostraram­se bastante eficazes na previsão da distribuição de casos de arbovírus. Os modelos indicam que as regiões sul e oeste do Recife foram muito suscetíveis a surtos no período investigado. A abordagem proposta pode ser útil para apoiar gestores de saúde e epidemiologistas na prevenção de surtos de arbovírus transmitidos pelo Aedes aegypti e na promoção de políticas públicas de promoção da saúde e saneamento.Research, Society and Development2021-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2080410.33448/rsd-v10i12.20804Research, Society and Development; Vol. 10 No. 12; e452101220804Research, Society and Development; Vol. 10 Núm. 12; e452101220804Research, Society and Development; v. 10 n. 12; e4521012208042525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/20804/18426Copyright (c) 2021 Cecilia Cordeiro da Silva; Clarisse Lins de Lima; Ana Clara Gomes da Silva; Giselle Machado Magalhães Moreno; Anwar Musah; Aisha Aldosery; Livia Dutra; Tercio Ambrizzi; Iuri Valério Graciano Borges; Merve Tunali; Selma Basibuyuk; Orhan Yenigün; Kate Jones; Luiza Campos; Tiago Lima Massoni; Abel Guilhermino da Silva Filho; Patty Kostkova; Wellington Pinheiro dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Cecilia Cordeiro daLima, Clarisse Lins deSilva, Ana Clara Gomes daMoreno, Giselle Machado MagalhãesMusah, AnwarAldosery, AishaDutra, LiviaAmbrizzi, TercioBorges, Iuri Valério GracianoTunali, MerveBasibuyuk, SelmaYenigün, OrhanJones, KateCampos, LuizaMassoni, Tiago LimaSilva Filho, Abel Guilhermino daKostkova, PattySantos, Wellington Pinheiro dos2021-11-14T20:26:51Zoai:ojs.pkp.sfu.ca:article/20804Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:40:20.801493Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
Pronóstico de casos de Dengue, Chikungunya y Zika en Recife, Brasil: un enfoque espacio-temporal basado en las condiciones climáticas, notificaciones de salud y aprendizaje de máquina
Predição de casos de Dengue, Chikungunya e Zika em Recife, Brasil: uma abordagem espaço-temporal com base em condições climáticas, notificações de saúde e aprendizado de máquina
title Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
spellingShingle Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
Silva, Cecilia Cordeiro da
Dengue forecasting
Chikungunya forecasting
Zika forecasting
Arboviruses forecasting
Machine learning
Arboviruses prediction.
Previsão da dengue
Previsão de Chikungunya
Previsão do Zika
Previsão de arbovírus
Aprendizado de máquina
Predição de arbovírus.
Pronóstico del dengue
Pronóstico de Chikungunya
Pronóstico del Zika
Predicción de arbovirus
Aprendizaje de máquina
Predicción de arbovírus.
title_short Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
title_full Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
title_fullStr Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
title_full_unstemmed Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
title_sort Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning
author Silva, Cecilia Cordeiro da
author_facet Silva, Cecilia Cordeiro da
Lima, Clarisse Lins de
Silva, Ana Clara Gomes da
Moreno, Giselle Machado Magalhães
Musah, Anwar
Aldosery, Aisha
Dutra, Livia
Ambrizzi, Tercio
Borges, Iuri Valério Graciano
Tunali, Merve
Basibuyuk, Selma
Yenigün, Orhan
Jones, Kate
Campos, Luiza
Massoni, Tiago Lima
Silva Filho, Abel Guilhermino da
Kostkova, Patty
Santos, Wellington Pinheiro dos
author_role author
author2 Lima, Clarisse Lins de
Silva, Ana Clara Gomes da
Moreno, Giselle Machado Magalhães
Musah, Anwar
Aldosery, Aisha
Dutra, Livia
Ambrizzi, Tercio
Borges, Iuri Valério Graciano
Tunali, Merve
Basibuyuk, Selma
Yenigün, Orhan
Jones, Kate
Campos, Luiza
Massoni, Tiago Lima
Silva Filho, Abel Guilhermino da
Kostkova, Patty
Santos, Wellington Pinheiro dos
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Cecilia Cordeiro da
Lima, Clarisse Lins de
Silva, Ana Clara Gomes da
Moreno, Giselle Machado Magalhães
Musah, Anwar
Aldosery, Aisha
Dutra, Livia
Ambrizzi, Tercio
Borges, Iuri Valério Graciano
Tunali, Merve
Basibuyuk, Selma
Yenigün, Orhan
Jones, Kate
Campos, Luiza
Massoni, Tiago Lima
Silva Filho, Abel Guilhermino da
Kostkova, Patty
Santos, Wellington Pinheiro dos
dc.subject.por.fl_str_mv Dengue forecasting
Chikungunya forecasting
Zika forecasting
Arboviruses forecasting
Machine learning
Arboviruses prediction.
Previsão da dengue
Previsão de Chikungunya
Previsão do Zika
Previsão de arbovírus
Aprendizado de máquina
Predição de arbovírus.
Pronóstico del dengue
Pronóstico de Chikungunya
Pronóstico del Zika
Predicción de arbovirus
Aprendizaje de máquina
Predicción de arbovírus.
topic Dengue forecasting
Chikungunya forecasting
Zika forecasting
Arboviruses forecasting
Machine learning
Arboviruses prediction.
Previsão da dengue
Previsão de Chikungunya
Previsão do Zika
Previsão de arbovírus
Aprendizado de máquina
Predição de arbovírus.
Pronóstico del dengue
Pronóstico de Chikungunya
Pronóstico del Zika
Predicción de arbovirus
Aprendizaje de máquina
Predicción de arbovírus.
description Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/20804
10.33448/rsd-v10i12.20804
url https://rsdjournal.org/index.php/rsd/article/view/20804
identifier_str_mv 10.33448/rsd-v10i12.20804
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/20804/18426
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 12; e452101220804
Research, Society and Development; Vol. 10 Núm. 12; e452101220804
Research, Society and Development; v. 10 n. 12; e452101220804
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052756122402816