Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/20466 |
Resumo: | Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand. |
id |
UNIFEI_825bfcddaa8d1d19fc3166cfc27621bf |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/20466 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantationRedes neuronales artificiales y teledetección para la predicción volumétrica en plantaciones de Eucalyptus sp.Redes neurais artificiais e sensoriamento remoto para predição volumétrica em um povoamento de Eucalyptus sp.Inventario forestalAprendizaje de máquinaRedes neuronales artificialesPlantación de Eucalyptus sp.Forest inventoryMachine learningArtificial neural networkEucalyptus sp. plantation.Inventário florestalAprendizado de máquinaRedes neurais artificiaisPovoamento de Eucalyptus sp.Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand.El inventario forestal es una herramienta importante para estimar la producción de la masa de una plantación forestal, que normalmente, es determinada empleando métodos tradicionales. Sin embargo, como resultado de los avances tecnológicos, las redes neurales artificiales y la teledetección han asumido un papel destacado en el sector forestal, ya que las imágenes de satélite tienen diferentes componentes que se correlacionan con las variables dendrométricas y pueden ser utilizadas como variables auxiliares. El objetivo de este trabajo fue evaluar el rendimiento de las redes neuronales artificiales en la estimación del volumen en una plantación de Eucalyptus sp. con el uso de imágenes de satélite. Se utilizaron datos inventariados de precorte, con edades que varían entre 5,3 y 6,3 años. Las variables utilizadas fueron volumen, edad, 4 bandas de imagen digital registrada por el satélite Sentinell-2 con resolución espacial de 10 m, relación entre las bandas, NDVI y material genético. Todo el procesamiento fue realizado con el software R de libre acceso. Los criterios de evaluación de las redes neuronales fueron el porcentaje de error estándar residual y el análisis gráfico de los residuos. La mejor configuración de red neuronal resultante para la estimación del volumen presentó un error estándar residual del 10,63% y del 12,00% para el entrenamiento y la validación, respectivamente. La metodología propuesta en este trabajo demostró ser eficiente en la estimación del volumen de la plantación.O Inventário Florestal é uma ferramenta importante para estimar a produção de povoamentos e, normalmente, emprega métodos tradicionais para a estimativa de volume. Entretanto, como resultado dos avanços tecnológicos, as redes neurais artificiais e o sensoriamento remoto surgem cada vez mais no setor florestal, visto que as imagens de satélite têm diferentes componentes que correlacionam-se com variáveis dendrométricas e podem ser usadas como variáveis auxiliares. O objetivo deste trabalho foi avaliar a performance de redes neurais artificiais em estimar o volume de um povoamento de Eucalyptus sp. com o uso de imagens de satélite. Dados de inventário pré-corte foram utilizados, com idades variando entre 5,3 e 6,3 anos. As variáveis usadas foram: volume, idade, 4 bandas da imagem de satélite com resolução espacial de 10 m proveniente do satélite Sentinell-2, razão entre as bandas, NDVI e material genético. Todo o processamento dos dados foi realizado utilizando o software livre R. Os critérios de avaliação da rede neural foram o erro padrão residual em porcentagem e as análises gráficas dos resíduos. A melhor configuração de rede neural para estimativa de volume apresentou erro padrão residual de 10,63% e 12,00% para treinamento e validação, respectivamente. A metodologia proposta neste trabalho provou-se eficiente em estimar o volume do povoamento.Research, Society and Development2021-09-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2046610.33448/rsd-v10i12.20466Research, Society and Development; Vol. 10 No. 12; e250101220466Research, Society and Development; Vol. 10 Núm. 12; e250101220466Research, Society and Development; v. 10 n. 12; e2501012204662525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/20466/18184Copyright (c) 2021 Alessandro Araujo Amaral de Almeida; Monica Fabiana Bento Moreira Thiersch; Lucas Kröhling Bernardi; Franciane Andrade de Pádua; Argemiro José Moreno Arteaga; Claudio Roberto Thierschhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAlmeida, Alessandro Araujo Amaral deThiersch, Monica Fabiana Bento MoreiraBernardi, Lucas KröhlingPádua, Franciane Andrade deArteaga, Argemiro José MorenoThiersch, Claudio Roberto2021-11-14T20:26:51Zoai:ojs.pkp.sfu.ca:article/20466Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:40:06.450425Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation Redes neuronales artificiales y teledetección para la predicción volumétrica en plantaciones de Eucalyptus sp. Redes neurais artificiais e sensoriamento remoto para predição volumétrica em um povoamento de Eucalyptus sp. |
title |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation |
spellingShingle |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation Almeida, Alessandro Araujo Amaral de Inventario forestal Aprendizaje de máquina Redes neuronales artificiales Plantación de Eucalyptus sp. Forest inventory Machine learning Artificial neural network Eucalyptus sp. plantation. Inventário florestal Aprendizado de máquina Redes neurais artificiais Povoamento de Eucalyptus sp. |
title_short |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation |
title_full |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation |
title_fullStr |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation |
title_full_unstemmed |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation |
title_sort |
Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation |
author |
Almeida, Alessandro Araujo Amaral de |
author_facet |
Almeida, Alessandro Araujo Amaral de Thiersch, Monica Fabiana Bento Moreira Bernardi, Lucas Kröhling Pádua, Franciane Andrade de Arteaga, Argemiro José Moreno Thiersch, Claudio Roberto |
author_role |
author |
author2 |
Thiersch, Monica Fabiana Bento Moreira Bernardi, Lucas Kröhling Pádua, Franciane Andrade de Arteaga, Argemiro José Moreno Thiersch, Claudio Roberto |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Almeida, Alessandro Araujo Amaral de Thiersch, Monica Fabiana Bento Moreira Bernardi, Lucas Kröhling Pádua, Franciane Andrade de Arteaga, Argemiro José Moreno Thiersch, Claudio Roberto |
dc.subject.por.fl_str_mv |
Inventario forestal Aprendizaje de máquina Redes neuronales artificiales Plantación de Eucalyptus sp. Forest inventory Machine learning Artificial neural network Eucalyptus sp. plantation. Inventário florestal Aprendizado de máquina Redes neurais artificiais Povoamento de Eucalyptus sp. |
topic |
Inventario forestal Aprendizaje de máquina Redes neuronales artificiales Plantación de Eucalyptus sp. Forest inventory Machine learning Artificial neural network Eucalyptus sp. plantation. Inventário florestal Aprendizado de máquina Redes neurais artificiais Povoamento de Eucalyptus sp. |
description |
Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-19 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/20466 10.33448/rsd-v10i12.20466 |
url |
https://rsdjournal.org/index.php/rsd/article/view/20466 |
identifier_str_mv |
10.33448/rsd-v10i12.20466 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/20466/18184 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 12; e250101220466 Research, Society and Development; Vol. 10 Núm. 12; e250101220466 Research, Society and Development; v. 10 n. 12; e250101220466 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052808817541120 |