Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation

Detalhes bibliográficos
Autor(a) principal: Almeida, Alessandro Araujo Amaral de
Data de Publicação: 2021
Outros Autores: Thiersch, Monica Fabiana Bento Moreira, Bernardi, Lucas Kröhling, Pádua, Franciane Andrade de, Arteaga, Argemiro José Moreno, Thiersch, Claudio Roberto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/20466
Resumo: Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand.
id UNIFEI_825bfcddaa8d1d19fc3166cfc27621bf
oai_identifier_str oai:ojs.pkp.sfu.ca:article/20466
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantationRedes neuronales artificiales y teledetección para la predicción volumétrica en plantaciones de Eucalyptus sp.Redes neurais artificiais e sensoriamento remoto para predição volumétrica em um povoamento de Eucalyptus sp.Inventario forestalAprendizaje de máquinaRedes neuronales artificialesPlantación de Eucalyptus sp.Forest inventoryMachine learningArtificial neural networkEucalyptus sp. plantation.Inventário florestalAprendizado de máquinaRedes neurais artificiaisPovoamento de Eucalyptus sp.Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand.El inventario forestal es una herramienta importante para estimar la producción de la masa de una plantación forestal, que normalmente, es determinada empleando métodos tradicionales. Sin embargo, como resultado de los avances tecnológicos, las redes neurales artificiales y la teledetección han asumido un papel destacado en el sector forestal, ya que las imágenes de satélite tienen diferentes componentes que se correlacionan con las variables dendrométricas y pueden ser utilizadas como variables auxiliares. El objetivo de este trabajo fue evaluar el rendimiento de las redes neuronales artificiales en la estimación del volumen en una plantación de Eucalyptus sp. con el uso de imágenes de satélite. Se utilizaron datos inventariados de precorte, con edades que varían entre 5,3 y 6,3 años. Las variables utilizadas fueron volumen, edad, 4 bandas de imagen digital registrada por el satélite Sentinell-2 con resolución espacial de 10 m, relación entre las bandas, NDVI y material genético. Todo el procesamiento fue realizado con el software R de libre acceso. Los criterios de evaluación de las redes neuronales fueron el porcentaje de error estándar residual y el análisis gráfico de los residuos. La mejor configuración de red neuronal resultante para la estimación del volumen presentó un error estándar residual del 10,63% y del 12,00% para el entrenamiento y la validación, respectivamente. La metodología propuesta en este trabajo demostró ser eficiente en la estimación del volumen de la plantación.O Inventário Florestal é uma ferramenta importante para estimar a produção de povoamentos e, normalmente, emprega métodos tradicionais para a estimativa de volume. Entretanto, como resultado dos avanços tecnológicos, as redes neurais artificiais e o sensoriamento remoto surgem cada vez mais no setor florestal, visto que as imagens de satélite têm diferentes componentes que correlacionam-se com variáveis dendrométricas e podem ser usadas como variáveis auxiliares. O objetivo deste trabalho foi avaliar a performance de redes neurais artificiais em estimar o volume de um povoamento de Eucalyptus sp. com o uso de imagens de satélite. Dados de inventário pré-corte foram utilizados, com idades variando entre 5,3 e 6,3 anos. As variáveis usadas foram: volume, idade, 4 bandas da imagem de satélite com resolução espacial de 10 m proveniente do satélite Sentinell-2, razão entre as bandas, NDVI e material genético. Todo o processamento dos dados foi realizado utilizando o software livre R. Os critérios de avaliação da rede neural foram o erro padrão residual em porcentagem e as análises gráficas dos resíduos. A melhor configuração de rede neural para estimativa de volume apresentou erro padrão residual de 10,63% e 12,00% para treinamento e validação, respectivamente. A metodologia proposta neste trabalho provou-se eficiente em estimar o volume do povoamento.Research, Society and Development2021-09-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2046610.33448/rsd-v10i12.20466Research, Society and Development; Vol. 10 No. 12; e250101220466Research, Society and Development; Vol. 10 Núm. 12; e250101220466Research, Society and Development; v. 10 n. 12; e2501012204662525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/20466/18184Copyright (c) 2021 Alessandro Araujo Amaral de Almeida; Monica Fabiana Bento Moreira Thiersch; Lucas Kröhling Bernardi; Franciane Andrade de Pádua; Argemiro José Moreno Arteaga; Claudio Roberto Thierschhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAlmeida, Alessandro Araujo Amaral deThiersch, Monica Fabiana Bento MoreiraBernardi, Lucas KröhlingPádua, Franciane Andrade deArteaga, Argemiro José MorenoThiersch, Claudio Roberto2021-11-14T20:26:51Zoai:ojs.pkp.sfu.ca:article/20466Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:40:06.450425Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
Redes neuronales artificiales y teledetección para la predicción volumétrica en plantaciones de Eucalyptus sp.
Redes neurais artificiais e sensoriamento remoto para predição volumétrica em um povoamento de Eucalyptus sp.
title Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
spellingShingle Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
Almeida, Alessandro Araujo Amaral de
Inventario forestal
Aprendizaje de máquina
Redes neuronales artificiales
Plantación de Eucalyptus sp.
Forest inventory
Machine learning
Artificial neural network
Eucalyptus sp. plantation.
Inventário florestal
Aprendizado de máquina
Redes neurais artificiais
Povoamento de Eucalyptus sp.
title_short Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
title_full Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
title_fullStr Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
title_full_unstemmed Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
title_sort Artificial neural networks and remote sensing for volumetric prediction in a Eucalyptus sp. plantation
author Almeida, Alessandro Araujo Amaral de
author_facet Almeida, Alessandro Araujo Amaral de
Thiersch, Monica Fabiana Bento Moreira
Bernardi, Lucas Kröhling
Pádua, Franciane Andrade de
Arteaga, Argemiro José Moreno
Thiersch, Claudio Roberto
author_role author
author2 Thiersch, Monica Fabiana Bento Moreira
Bernardi, Lucas Kröhling
Pádua, Franciane Andrade de
Arteaga, Argemiro José Moreno
Thiersch, Claudio Roberto
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Almeida, Alessandro Araujo Amaral de
Thiersch, Monica Fabiana Bento Moreira
Bernardi, Lucas Kröhling
Pádua, Franciane Andrade de
Arteaga, Argemiro José Moreno
Thiersch, Claudio Roberto
dc.subject.por.fl_str_mv Inventario forestal
Aprendizaje de máquina
Redes neuronales artificiales
Plantación de Eucalyptus sp.
Forest inventory
Machine learning
Artificial neural network
Eucalyptus sp. plantation.
Inventário florestal
Aprendizado de máquina
Redes neurais artificiais
Povoamento de Eucalyptus sp.
topic Inventario forestal
Aprendizaje de máquina
Redes neuronales artificiales
Plantación de Eucalyptus sp.
Forest inventory
Machine learning
Artificial neural network
Eucalyptus sp. plantation.
Inventário florestal
Aprendizado de máquina
Redes neurais artificiais
Povoamento de Eucalyptus sp.
description Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-19
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/20466
10.33448/rsd-v10i12.20466
url https://rsdjournal.org/index.php/rsd/article/view/20466
identifier_str_mv 10.33448/rsd-v10i12.20466
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/20466/18184
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 12; e250101220466
Research, Society and Development; Vol. 10 Núm. 12; e250101220466
Research, Society and Development; v. 10 n. 12; e250101220466
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052808817541120