Logistic modeling and risk factors associated with COVID-19 patients, Brazil

Detalhes bibliográficos
Autor(a) principal: Freitas, Jucarlos Rufino de
Data de Publicação: 2020
Outros Autores: Pereira, Mickaelle Maria de Almeida, Silva, Laura Alves Pacifico da, Pessoa, Ruben Vivaldi Silva, Santana, Leika Irabele Tenório de, Silva, Joelma Mayara da, Lima, Claudia Regina Oliveira de Paiva, Albuquerque, Cristiane Rocha, Cunha Filho, Moacyr
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/11028
Resumo: Objective: Through a logistic regression model, the clinical profile of the affected individuals was drawn. Methods: We used data from the number of confirmed cases of COVID-19, available through SEPLAG-PE, in partnership with SES and ATI, from March 12, 2020 to July 13, 2020. Results: The group with the highest frequency of deaths belongs to the age group above 50 years, becoming statistically significant in relation to the evolution of the disease. Among the patients who died, the majority presented diabetes, hypertension and other comorbidities, being statistically significant in relation to the evolution of the clinical picture of OVID-19. Conclusion: The results provide significant assessments for the understanding of possible risk factors related to deaths by OVID-19, becoming a useful tool in decision-making for health professionals.
id UNIFEI_846a60fbd7a20283ba2ee04e5118e9ce
oai_identifier_str oai:ojs.pkp.sfu.ca:article/11028
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Logistic modeling and risk factors associated with COVID-19 patients, BrazilModelos logísticos y factores de riesgo asociados a los pacientes de COVID-19, BrasilModelagem logística e fatores de risco associados aos pacientes com COVID-19, BrasilCOVID-19RegressãoComorbidadesDiagnóstico.COVID-19RegresiónComorbilidadesDiagnóstico.COVID-19RegressionComorbiditiesDiagnosis.Objective: Through a logistic regression model, the clinical profile of the affected individuals was drawn. Methods: We used data from the number of confirmed cases of COVID-19, available through SEPLAG-PE, in partnership with SES and ATI, from March 12, 2020 to July 13, 2020. Results: The group with the highest frequency of deaths belongs to the age group above 50 years, becoming statistically significant in relation to the evolution of the disease. Among the patients who died, the majority presented diabetes, hypertension and other comorbidities, being statistically significant in relation to the evolution of the clinical picture of OVID-19. Conclusion: The results provide significant assessments for the understanding of possible risk factors related to deaths by OVID-19, becoming a useful tool in decision-making for health professionals.Objetivo: A través de un modelo de regresión logística, se dibujó el perfil clínico de los individuos afectados. Métodos: Utilizamos los datos del número de casos confirmados de COVID-19, disponibles a través de SEPLAG-PE, en asociación con SES y ATI, desde el 12 de marzo de 2020 hasta el 13 de julio de 2020. Resultados: El grupo con mayor frecuencia de muertes pertenece al grupo de edad de más de 50 años, lo que resulta estadísticamente significativo en relación con la evolución de la enfermedad. Entre los pacientes que murieron, la mayoría presentaba diabetes, hipertensión y otras comorbilidades, siendo estadísticamente significativo en relación con la evolución del cuadro clínico de COVID-19. Conclusión: Los resultados proporcionan evaluaciones significativas para la comprensión de los posibles factores de riesgo relacionados con las muertes por COVID-19, convirtiéndose en una herramienta útil en la toma de decisiones para los profesionales de la salud.Objetivo: Buscou-se por meio de um modelo de regressão logístico, traçar o perfil clínico dos indivíduos acometidos. Métodos: Utilizaram-se dados do número de casos confirmados da COVID-19, disponibilizados através da SEPLAG-PE, em parceria com a SES e a ATI, no período de 12 de março de 2020 a 13 de julho de 2020. Resultados: O grupo com maior frequência de óbitos pertence a faixa etária acima dos 50 anos, tornando-se estatisticamente significativa em relação a evolução da doença. Dentre os pacientes que foram a óbito, grande maioria apresentou diabetes, hipertensão e outras comorbidades, sendo estatisticamente significativas em relação à evolução do quadro clínico da COVID-19. Conclusão: Os resultados fornecem avaliações significativas para o entendimento de possíveis fatores de riscos ligados aos óbitos por COVID-19, tornando-se uma ferramenta útil nas tomadas de decisões para os profissionais da área de saúde.Research, Society and Development2020-12-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1102810.33448/rsd-v9i12.11028Research, Society and Development; Vol. 9 No. 12; e17391211028Research, Society and Development; Vol. 9 Núm. 12; e17391211028Research, Society and Development; v. 9 n. 12; e173912110282525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/11028/9792Copyright (c) 2020 Jucarlos Rufino de Freitas; Mickaelle Maria de Almeida Pereira; Laura Alves Pacifico da Silva; Ruben Vivaldi Silva Pessoa; Leika Irabele Tenório de Santana; Joelma Mayara da Silva; Claudia Regina Oliveira de Paiva Lima; Cristiane Rocha Albuquerque; Moacyr Cunha Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessFreitas, Jucarlos Rufino dePereira, Mickaelle Maria de Almeida Silva, Laura Alves Pacifico da Pessoa, Ruben Vivaldi SilvaSantana, Leika Irabele Tenório de Silva, Joelma Mayara da Lima, Claudia Regina Oliveira de PaivaAlbuquerque, Cristiane Rocha Cunha Filho, Moacyr 2020-12-30T23:32:22Zoai:ojs.pkp.sfu.ca:article/11028Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:57.878810Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Logistic modeling and risk factors associated with COVID-19 patients, Brazil
Modelos logísticos y factores de riesgo asociados a los pacientes de COVID-19, Brasil
Modelagem logística e fatores de risco associados aos pacientes com COVID-19, Brasil
title Logistic modeling and risk factors associated with COVID-19 patients, Brazil
spellingShingle Logistic modeling and risk factors associated with COVID-19 patients, Brazil
Freitas, Jucarlos Rufino de
COVID-19
Regressão
Comorbidades
Diagnóstico.
COVID-19
Regresión
Comorbilidades
Diagnóstico.
COVID-19
Regression
Comorbidities
Diagnosis.
title_short Logistic modeling and risk factors associated with COVID-19 patients, Brazil
title_full Logistic modeling and risk factors associated with COVID-19 patients, Brazil
title_fullStr Logistic modeling and risk factors associated with COVID-19 patients, Brazil
title_full_unstemmed Logistic modeling and risk factors associated with COVID-19 patients, Brazil
title_sort Logistic modeling and risk factors associated with COVID-19 patients, Brazil
author Freitas, Jucarlos Rufino de
author_facet Freitas, Jucarlos Rufino de
Pereira, Mickaelle Maria de Almeida
Silva, Laura Alves Pacifico da
Pessoa, Ruben Vivaldi Silva
Santana, Leika Irabele Tenório de
Silva, Joelma Mayara da
Lima, Claudia Regina Oliveira de Paiva
Albuquerque, Cristiane Rocha
Cunha Filho, Moacyr
author_role author
author2 Pereira, Mickaelle Maria de Almeida
Silva, Laura Alves Pacifico da
Pessoa, Ruben Vivaldi Silva
Santana, Leika Irabele Tenório de
Silva, Joelma Mayara da
Lima, Claudia Regina Oliveira de Paiva
Albuquerque, Cristiane Rocha
Cunha Filho, Moacyr
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Freitas, Jucarlos Rufino de
Pereira, Mickaelle Maria de Almeida
Silva, Laura Alves Pacifico da
Pessoa, Ruben Vivaldi Silva
Santana, Leika Irabele Tenório de
Silva, Joelma Mayara da
Lima, Claudia Regina Oliveira de Paiva
Albuquerque, Cristiane Rocha
Cunha Filho, Moacyr
dc.subject.por.fl_str_mv COVID-19
Regressão
Comorbidades
Diagnóstico.
COVID-19
Regresión
Comorbilidades
Diagnóstico.
COVID-19
Regression
Comorbidities
Diagnosis.
topic COVID-19
Regressão
Comorbidades
Diagnóstico.
COVID-19
Regresión
Comorbilidades
Diagnóstico.
COVID-19
Regression
Comorbidities
Diagnosis.
description Objective: Through a logistic regression model, the clinical profile of the affected individuals was drawn. Methods: We used data from the number of confirmed cases of COVID-19, available through SEPLAG-PE, in partnership with SES and ATI, from March 12, 2020 to July 13, 2020. Results: The group with the highest frequency of deaths belongs to the age group above 50 years, becoming statistically significant in relation to the evolution of the disease. Among the patients who died, the majority presented diabetes, hypertension and other comorbidities, being statistically significant in relation to the evolution of the clinical picture of OVID-19. Conclusion: The results provide significant assessments for the understanding of possible risk factors related to deaths by OVID-19, becoming a useful tool in decision-making for health professionals.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-18
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/11028
10.33448/rsd-v9i12.11028
url https://rsdjournal.org/index.php/rsd/article/view/11028
identifier_str_mv 10.33448/rsd-v9i12.11028
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/11028/9792
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 12; e17391211028
Research, Society and Development; Vol. 9 Núm. 12; e17391211028
Research, Society and Development; v. 9 n. 12; e17391211028
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052666539409408