Optimization of operational costs of Call centers employing classification techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/10491 |
Resumo: | The provision of credit to customers of banking chains through call center services has always been one of the resources that generate significant income for financial institutions, however, the service offers a cost, which is often above desirable to guarantee profitable contracting to Bank. Based on this, this work aims to evaluate the optimization of operational costs of call center, using classification techniques, through experimentation of supervised machine learning techniques to perform the classification task, in order to generate a predictive model, which offers a better performance in the operation of offering bank credit, to carry out an effective and productive action, conceiving greater savings for the company in identifying the public with greater adherence. For this, a database comprising 11,162 call records made from a bank offering its customers a letter of credit was employed. The results showed value correlations between variables, such as duration of the call, marital status, education level and even recurrence in adhering to subscribers' credit agreements. Through the application of the PCA to reduce dimensionality and classification models, such as AdaBoost, Gradient Boosting, SVM RBF, Naive Bayes, Random Forest, it was possible to perceive the consumer profile with good acquiescence for the investment proposal and a group of people with a high probability of not adhering to the letter of credit, so it was possible to outline an action directed to the public predisposed to the offer, minimizing expenses reaching greater profitability. |
id |
UNIFEI_8525809accdca9fda3712e92f5db97ee |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/10491 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Optimization of operational costs of Call centers employing classification techniquesLa optimización de los costes operativos del Call Center empleando técnicas de clasificaciónA otimização dos custos operacionais do Call center empregando técnicas de classificaçãoCall centerMachine learningSupervised modelsClassification and predictive model.Call centerMachine learningModelos supervisadosClasificación y modelo predictivo.Call centerAprendizado de máquinaModelos supervisionadosClassificação e modelo preditivo.The provision of credit to customers of banking chains through call center services has always been one of the resources that generate significant income for financial institutions, however, the service offers a cost, which is often above desirable to guarantee profitable contracting to Bank. Based on this, this work aims to evaluate the optimization of operational costs of call center, using classification techniques, through experimentation of supervised machine learning techniques to perform the classification task, in order to generate a predictive model, which offers a better performance in the operation of offering bank credit, to carry out an effective and productive action, conceiving greater savings for the company in identifying the public with greater adherence. For this, a database comprising 11,162 call records made from a bank offering its customers a letter of credit was employed. The results showed value correlations between variables, such as duration of the call, marital status, education level and even recurrence in adhering to subscribers' credit agreements. Through the application of the PCA to reduce dimensionality and classification models, such as AdaBoost, Gradient Boosting, SVM RBF, Naive Bayes, Random Forest, it was possible to perceive the consumer profile with good acquiescence for the investment proposal and a group of people with a high probability of not adhering to the letter of credit, so it was possible to outline an action directed to the public predisposed to the offer, minimizing expenses reaching greater profitability.La provisión de crédito a los clientes de las redes bancarias a través de los servicios de call center siempre ha sido uno de los recursos que generan importantes ingresos para las instituciones financieras, sin embargo, el servicio ofrece un costo, muchas veces por encima de lo deseable para garantizar una contratación rentable con Banco. En base a esto, este trabajo tiene como objetivo evaluar la optimización de los costos operacionales del centro de llamadas, utilizando técnicas de clasificación, mediante la experimentación de técnicas de aprendizaje automático supervisado para realizar la tarea de clasificación, con el fin de generar un modelo predictivo, que ofrece una mejor desempeño en la operación de oferta de crédito bancario, para llevar a cabo una acción eficaz y productiva, concibiendo mayores ahorros para la empresa en la identificación de los públicos con mayor adhesión. Para ello, se seleccionó una base de datos con 11.162 registros de llamadas realizadas desde un banco, ofreciendo a sus clientes una carta de crédito. Los resultados arrojaron correlaciones de valor entre variables, como duración de la llamada, estado civil, nivel educativo e incluso recurrencia en la adhesión a contratos de crédito de suscriptores, con la aplicación del PCA para reducir modelos de dimensionalidad y clasificación, como : AdaBoost, Gradient Boosting, SVM RBF, Naive Bayes, Random Forest, se pudo percibir el perfil del consumidor con buena aquiescencia para la propuesta de inversión y un grupo de personas con alta probabilidad de no adherencia a la carta de crédito, por lo que se pudo perfilar una acción dirigida al público predispuesto a la oferta, minimizando los gastos alcanzando una mayor rentabilidad.A oferta de crédito aos clientes de redes bancárias, através de serviços de call center sempre foi um dos recursos que geram uma renda significativa as instituições financeiras, porém, o serviço oferece um custo, que muitas vezes está acima do desejável para garantir contratações rentáveis ao banco. Baseado nisso este trabalho tem por objetivo avaliar a otimização de custos operacionais de call center, empregando técnicas de classificação, através de experimentação de técnicas de aprendizado de máquina supervisionado para realizar a tarefa de classificação, a fim de gerar um modelo preditivo, que ofereça um melhor desempenho na operação de oferta de crédito bancário, para a realização de uma ação eficaz e produtiva, concebendo maior economia a empresa na identificação do público com maior aderência. Para isso foi utilizada uma base de dados com 11.162 registros de ligações feitas de um banco, oferecendo aos seus clientes uma carta de crédito. Os resultados apresentaram correlações de valor entre as variáveis, como tempo de duração da ligação, estado civil, nível escolaridade e até recorrência na adesão à contratos de crédito dos assinantes. Com a aplicação da PCA para redução da dimensionalidade e dos modelos de classificação, como: AdaBoost, Gradient Boosting, SVM RBF, Naive Bayes, Random Forest, foi possível perceber o perfil do consumidor com boa aquiescência para proposta de investimento e um grupo de pessoas com probabilidade alta de não adesão à carta de crédito, assim pôde-se delinear uma ação direcionada ao público predisposto à oferta, minimizando gastos atingindo maior lucratividade.Research, Society and Development2020-12-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1049110.33448/rsd-v9i11.10491Research, Society and Development; Vol. 9 No. 11; e86691110491Research, Society and Development; Vol. 9 Núm. 11; e86691110491Research, Society and Development; v. 9 n. 11; e866911104912525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/10491/9489Copyright (c) 2020 Amanda Ferreira de Moura; Cíntia Maria de Araújo Pinho; Domingos Márcio Rodrigues Napolitano; Fellipe Silva Martins; João Carlos Franco de Barros Fornari Juniorhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMoura, Amanda Ferreira dePinho, Cíntia Maria de Araújo Napolitano, Domingos Márcio RodriguesMartins, Fellipe Silva Fornari Junior, João Carlos Franco de Barros 2020-12-10T23:37:57Zoai:ojs.pkp.sfu.ca:article/10491Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:33.146633Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Optimization of operational costs of Call centers employing classification techniques La optimización de los costes operativos del Call Center empleando técnicas de clasificación A otimização dos custos operacionais do Call center empregando técnicas de classificação |
title |
Optimization of operational costs of Call centers employing classification techniques |
spellingShingle |
Optimization of operational costs of Call centers employing classification techniques Moura, Amanda Ferreira de Call center Machine learning Supervised models Classification and predictive model. Call center Machine learning Modelos supervisados Clasificación y modelo predictivo. Call center Aprendizado de máquina Modelos supervisionados Classificação e modelo preditivo. |
title_short |
Optimization of operational costs of Call centers employing classification techniques |
title_full |
Optimization of operational costs of Call centers employing classification techniques |
title_fullStr |
Optimization of operational costs of Call centers employing classification techniques |
title_full_unstemmed |
Optimization of operational costs of Call centers employing classification techniques |
title_sort |
Optimization of operational costs of Call centers employing classification techniques |
author |
Moura, Amanda Ferreira de |
author_facet |
Moura, Amanda Ferreira de Pinho, Cíntia Maria de Araújo Napolitano, Domingos Márcio Rodrigues Martins, Fellipe Silva Fornari Junior, João Carlos Franco de Barros |
author_role |
author |
author2 |
Pinho, Cíntia Maria de Araújo Napolitano, Domingos Márcio Rodrigues Martins, Fellipe Silva Fornari Junior, João Carlos Franco de Barros |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Moura, Amanda Ferreira de Pinho, Cíntia Maria de Araújo Napolitano, Domingos Márcio Rodrigues Martins, Fellipe Silva Fornari Junior, João Carlos Franco de Barros |
dc.subject.por.fl_str_mv |
Call center Machine learning Supervised models Classification and predictive model. Call center Machine learning Modelos supervisados Clasificación y modelo predictivo. Call center Aprendizado de máquina Modelos supervisionados Classificação e modelo preditivo. |
topic |
Call center Machine learning Supervised models Classification and predictive model. Call center Machine learning Modelos supervisados Clasificación y modelo predictivo. Call center Aprendizado de máquina Modelos supervisionados Classificação e modelo preditivo. |
description |
The provision of credit to customers of banking chains through call center services has always been one of the resources that generate significant income for financial institutions, however, the service offers a cost, which is often above desirable to guarantee profitable contracting to Bank. Based on this, this work aims to evaluate the optimization of operational costs of call center, using classification techniques, through experimentation of supervised machine learning techniques to perform the classification task, in order to generate a predictive model, which offers a better performance in the operation of offering bank credit, to carry out an effective and productive action, conceiving greater savings for the company in identifying the public with greater adherence. For this, a database comprising 11,162 call records made from a bank offering its customers a letter of credit was employed. The results showed value correlations between variables, such as duration of the call, marital status, education level and even recurrence in adhering to subscribers' credit agreements. Through the application of the PCA to reduce dimensionality and classification models, such as AdaBoost, Gradient Boosting, SVM RBF, Naive Bayes, Random Forest, it was possible to perceive the consumer profile with good acquiescence for the investment proposal and a group of people with a high probability of not adhering to the letter of credit, so it was possible to outline an action directed to the public predisposed to the offer, minimizing expenses reaching greater profitability. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10491 10.33448/rsd-v9i11.10491 |
url |
https://rsdjournal.org/index.php/rsd/article/view/10491 |
identifier_str_mv |
10.33448/rsd-v9i11.10491 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10491/9489 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 11; e86691110491 Research, Society and Development; Vol. 9 Núm. 11; e86691110491 Research, Society and Development; v. 9 n. 11; e86691110491 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052831696420864 |