Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/25768 |
Resumo: | Different approaches for the use of Artificial Neural Networks - ANNs, in the recognition of image patterns, have been used with variations ranging from the processing of the image data to the ANN architecture itself. This paper describes the development of a system that aims to recognize patterns of images with ANNs of three inputs that receive images decomposed into their RGB components. The ANNs have an architecture with two hidden layers of six neurons each, and use the algorithm Backpropagation. The built model normalizes RGB components with values between zero and one. The Backpropagation algorithm is used for the purpose of functional approximation of these components, and after training, the numerical arrangements obtained in the three outputs corresponding to the inputs are denormalized to form the resulting training image. Six image pattern had training in different ANNs, forming a system to recognized each pattern. The feasibility of using the model was verified with the tests for its generalization capacity. Images used to position a mechanical device, which did not participate in the training, were inserted into the system and from them the positioning of the device was performed, with a high degree of accuracy. |
id |
UNIFEI_959885741bcd95a2fde9733c7f8d4f43 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/25768 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB componentsProcesamiento de imágenes para posicionamiento de dispositivo mecánico con algoritmo de retropropagación y manejo separado de componentes RGBProcessamento de imagem para posicionamento de dispositivos mecânico com algoritmo de retropropagação e manipulação em separado de componentes RGBRedes neurais artificiaisAutomaçãoImagens digitaisAlgoritmo Backpropagation.Redes neuronales artificialesAutomatizaciónImágenes digitalesAlgoritmo de Retropropagación.Artificial Neural NetworksAutomationDigital imagesBackpropagation Algorithm. Different approaches for the use of Artificial Neural Networks - ANNs, in the recognition of image patterns, have been used with variations ranging from the processing of the image data to the ANN architecture itself. This paper describes the development of a system that aims to recognize patterns of images with ANNs of three inputs that receive images decomposed into their RGB components. The ANNs have an architecture with two hidden layers of six neurons each, and use the algorithm Backpropagation. The built model normalizes RGB components with values between zero and one. The Backpropagation algorithm is used for the purpose of functional approximation of these components, and after training, the numerical arrangements obtained in the three outputs corresponding to the inputs are denormalized to form the resulting training image. Six image pattern had training in different ANNs, forming a system to recognized each pattern. The feasibility of using the model was verified with the tests for its generalization capacity. Images used to position a mechanical device, which did not participate in the training, were inserted into the system and from them the positioning of the device was performed, with a high degree of accuracy.Se han utilizado diferentes enfoques para el uso de Redes Neuronales Artificiales - ANN, en el reconocimiento de patrones de imagen, con variaciones que van desde el procesamiento de los datos de la imagen hasta la propia arquitectura ANN. Este artículo describe el desarrollo de un sistema que tiene como objetivo reconocer patrones de imágenes con ANNs de tres entradas que reciben imágenes descompuestas en sus componentes RGB. Las ANN tienen una arquitectura con dos capas ocultas de seis neuronas cada una, y utilizan el algoritmo Backpropagation. El modelo construido normaliza los componentes RGB con valores entre cero y uno. El algoritmo Backpropagation se utiliza con el fin de realizar una aproximación funcional de estos componentes y, después del entrenamiento, los arreglos numéricos obtenidos en las tres salidas correspondientes a las entradas se desnormalizan para formar la imagen de entrenamiento resultante. Seis patrones de imagen fueron entrenados en diferentes ANN, formando un sistema para reconocer cada patrón. La factibilidad de uso del modelo se verificó con las pruebas de su capacidad de generalización. Las imágenes utilizadas para posicionar un dispositivo mecánico, que no participaba en el entrenamiento, fueron insertadas en el sistema ya partir de ellas se realizó el posicionamiento del dispositivo, con un alto grado de precisión.Diferentes abordagens para o uso de Redes Neurais Artificiais - RNAs, no reconhecimento de padrões de imagem, têm sido utilizadas com variações que vão desde o processamento dos dados da imagem até a própria arquitetura da RNA. Este artigo descreve o desenvolvimento de um sistema que visa reconhecer padrões de imagens com RNAs de três entradas que recebem imagens decompostas em seus componentes RGB. As RNAs possuem uma arquitetura com duas camadas ocultas de seis neurônios cada, e utilizam o algoritmo Backpropagation. O modelo construído normaliza os componentes RGB com valores entre zero e um. O algoritmo Backpropagation é utilizado para fins de aproximação funcional desses componentes e, após o treinamento, os arranjos numéricos obtidos nas três saídas correspondentes às entradas são desnormalizados para formar a imagem de treinamento resultante. Seis padrões de imagem foram treinados em diferentes RNAs, formando um sistema para reconhecer cada padrão. A viabilidade de utilização do modelo foi verificada com os testes de sua capacidade de generalização. Imagens utilizadas para posicionar um dispositivo mecânico, que não participou do treinamento, foram inseridas no sistema e a partir delas foi realizado o posicionamento do dispositivo, com alto grau de precisão.Research, Society and Development2022-01-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2576810.33448/rsd-v11i2.25768Research, Society and Development; Vol. 11 No. 2; e21311225768Research, Society and Development; Vol. 11 Núm. 2; e21311225768Research, Society and Development; v. 11 n. 2; e213112257682525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/25768/22477Copyright (c) 2022 Mauricio Conceição Mario; Alzira Marques de Oliveira; João Inácio da Silva Filho; Dorotéa Vilanova Garcia; Heraldo Silveira Barbuyhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMario, Mauricio Conceição Oliveira, Alzira Marques de Silva Filho, João Inácio da Garcia, Dorotéa Vilanova Barbuy, Heraldo Silveira 2022-02-07T01:42:50Zoai:ojs.pkp.sfu.ca:article/25768Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:43:58.451632Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components Procesamiento de imágenes para posicionamiento de dispositivo mecánico con algoritmo de retropropagación y manejo separado de componentes RGB Processamento de imagem para posicionamento de dispositivos mecânico com algoritmo de retropropagação e manipulação em separado de componentes RGB |
title |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components |
spellingShingle |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components Mario, Mauricio Conceição Redes neurais artificiais Automação Imagens digitais Algoritmo Backpropagation. Redes neuronales artificiales Automatización Imágenes digitales Algoritmo de Retropropagación. Artificial Neural Networks Automation Digital images Backpropagation Algorithm. |
title_short |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components |
title_full |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components |
title_fullStr |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components |
title_full_unstemmed |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components |
title_sort |
Image processing for positioning mechanical device with Backpropagation algorithm and separate handling of RGB components |
author |
Mario, Mauricio Conceição |
author_facet |
Mario, Mauricio Conceição Oliveira, Alzira Marques de Silva Filho, João Inácio da Garcia, Dorotéa Vilanova Barbuy, Heraldo Silveira |
author_role |
author |
author2 |
Oliveira, Alzira Marques de Silva Filho, João Inácio da Garcia, Dorotéa Vilanova Barbuy, Heraldo Silveira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Mario, Mauricio Conceição Oliveira, Alzira Marques de Silva Filho, João Inácio da Garcia, Dorotéa Vilanova Barbuy, Heraldo Silveira |
dc.subject.por.fl_str_mv |
Redes neurais artificiais Automação Imagens digitais Algoritmo Backpropagation. Redes neuronales artificiales Automatización Imágenes digitales Algoritmo de Retropropagación. Artificial Neural Networks Automation Digital images Backpropagation Algorithm. |
topic |
Redes neurais artificiais Automação Imagens digitais Algoritmo Backpropagation. Redes neuronales artificiales Automatización Imágenes digitales Algoritmo de Retropropagación. Artificial Neural Networks Automation Digital images Backpropagation Algorithm. |
description |
Different approaches for the use of Artificial Neural Networks - ANNs, in the recognition of image patterns, have been used with variations ranging from the processing of the image data to the ANN architecture itself. This paper describes the development of a system that aims to recognize patterns of images with ANNs of three inputs that receive images decomposed into their RGB components. The ANNs have an architecture with two hidden layers of six neurons each, and use the algorithm Backpropagation. The built model normalizes RGB components with values between zero and one. The Backpropagation algorithm is used for the purpose of functional approximation of these components, and after training, the numerical arrangements obtained in the three outputs corresponding to the inputs are denormalized to form the resulting training image. Six image pattern had training in different ANNs, forming a system to recognized each pattern. The feasibility of using the model was verified with the tests for its generalization capacity. Images used to position a mechanical device, which did not participate in the training, were inserted into the system and from them the positioning of the device was performed, with a high degree of accuracy. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-23 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/25768 10.33448/rsd-v11i2.25768 |
url |
https://rsdjournal.org/index.php/rsd/article/view/25768 |
identifier_str_mv |
10.33448/rsd-v11i2.25768 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/25768/22477 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 2; e21311225768 Research, Society and Development; Vol. 11 Núm. 2; e21311225768 Research, Society and Development; v. 11 n. 2; e21311225768 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052826478706688 |